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Abstract

Rotationally Symmetric Planes in Comparison Geometry
By Eric Choi

Kondo-Tanaka generalized the Toponogov Comparison Theorem so that an
arbitrary noncompact manifold M can be compared with a rotationally sym-
metric plane Mm (defined by the metric dr2 +m2(r)dθ2), and they used this
to show that if Mm satisfies certain conditions, then M must be topologically
finite. We substitute one of the conditions for Mm with a weaker condition
and show that our method using this weaker condition enables us to draw
further conclusions on the topology of M . We also completely remove one
of the conditions required for the Sector Theorem, another important result
by Kondo-Tanaka. Cheeger-Gromoll showed that if M has nonnegative sec-
tional curvature, then M contains a boundaryless, totally convex, compact
submanifold S, called a soul, such that M is homeomorphic to the normal
bundle over S. We show that in the case of a rotationally symmetric plane
Mm, the set of souls is a closed geometric ball centered at the origin, and if
furthermore Mm is a von Mangoldt plane, then the radius of this ball can
be explicitly determined. We prove that the set of critical points of infinity
in Mm is equal to this set of souls, and we make observations on the set of
critical points of infinity when Mm is von Mangoldt with negative sectional
curvature near infinity. Finally, we set out conditions under which Mm can
be guaranteed an annulus free of critical points of infinity and show that we
can construct a von Mangoldt plane Mm that is a cone near infinity and for
which m′(r) near infinity is prescribed to be any number in (0, 1].
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3

Chapter 1

Introduction

We give below two different versions of our introduction: short and long.

As the terms suggest, the short version is tailored to give non-geometers

a bird’s-eye view of the overarching themes and salient theorems. The

long version gives geometers a more technical preparation for reading the

thesis. The long version is self-contained, so if you wish to read it, you

can skip the short version. In the final section, we give a quick overview

of the structure of this thesis.

1.1 Short Introduction

Global Riemannian geometry seeks to relate geometric data to topologi-

cal data. It is often of particular interest if we can show that a certain

set of traits imply that a noncompact manifold M is topologically finite,

i.e. that it is homeomorphic to the interior of a compact set with bound-

ary. According to the critical point theory of distance functions [Gro93],

[Gre97, Lemma 3.1], [Pet06, Section 11.1], M is topologically finite if the

set of critical points of the distance function to some point p ∈ M , de-

noted d(·, p), is bounded; we say that q ∈M is a critical point of d(·, p)
if for every v ∈ TqM there exists a minimal geodesic γ joining q to p such

that ](γ̇(0), v) ≤ π
2

.
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In chapter 8, we discuss results in [KT10], which applies the above prin-

ciple, and we improve on them. The authors generalize the Toponogov

Comparison Theorem to show that if the radial sectional curvature of M

from a basepoint p is bounded below by that of a rotationally symmet-

ric plane Mm with finite total curvature and a sector free of cut points,

then M must be topologically finite. (We define a rotationally sym-

metric plane Mm as R2 together with metric dr2 + m2(r)dθ2 ), where

m : (0,∞) → (0,∞), m(0) = 0, m′(0) = 1, is smooth and extends to a

smooth odd function around the origin. Examples of rotationally symmet-

ric planes are hyperboloids and paraboloids.) We improve on this result

by substituting the condition of total curvature (of Mm ) with the weaker

condition of sup{m′(r)} < ∞ . We also show that if sup{m′} = 1, if

Mm is not isometric to R2 (with the standard Euclidean metric), and if

basepoint p ∈ M is a critical point of infinity, then M is homeomorphic

to Rn . (See below in this introduction for a definition of a critical point

of infinity .)

We also improve on the Sector Theorem in [KT10] in chapter 8: If

Mm is von Mangoldt or Cartan-Hadamard outside a compact set and

has finite total curvature, then it must have a sector free of cut points.

The authors feel that the Sector Theorem “clarifies the real significance

of finite total curvature and the validity of the Main Theorem [in the

previous paragraph].” We improve on the Sector Theorem by showing

that the condition of finite total curvature can be dropped entirely.

If the sectional curvature of M is everywhere nonnegative, then the set

of critical points of d(·, p) must be bounded, so M must be topologically

finite. In fact we know much more: According to the Soul Theorem by

Cheeger-Gromoll (discussed in chapter 3), not only is M topologically fi-

nite, but there exists a compact, totally convex, boundaryless submanifold
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S , called a soul, such that M is diffeomorphic to the normal bundle over

S . For example, any soul of a contractible space such as Rn is isometric

to a point, and a soul of the infinite cylinder R × S1 is isometric to S1 .

The existence of a totally convex submanifold is in itself remarkable in

view of the fact that most Riemannian manifolds do not even contain a

nontrivial totally geodesic submanifolds. All souls of M are isometric to

each other, and any submanifold S ⊂ M isometric to a soul is called a

pseudo-soul . As the term suggests, S does not qualify as a soul just be-

cause it is isometric to S ; for S to be a soul, it must be the end result of

the soul construction procedure. So even if we understand the geometry

of S , it is still natural to wonder which submanifolds isometric to S are

actually souls of M .

Another distinguished set of points that may be found in a noncompact

manifold is the set of critical points of infinity. A point q ∈M is a critical

point of infinity if for every v ∈ TqM there exists a ray γ emanating

from q = γ(0) such that ](γ̇(0), v) ≤ π
2

. While the concept of souls

applies only to manifolds of everywhere nonnegative sectional curvature,

such a curvature restriction is not needed for critical points of infinity.

In the case of Mm with Gm ≥ 0, since Mm is diffeomorphic to R2 , we

know a priori that any soul of Mm is isometric to a point. But in chapters

5 and 6, we show that the set of souls equals the set of critical point of

infinity and that this set is a closed metric ball centered at the origin.

If furthermore Mm is von Mangoldt, then the radius of this ball can be

explicitly determined. Also in chapter 5, we present our observations on

the set of critical points of infinity when the sectional curvature of Mm is

not everywhere nonnegative, and we also show that certain conditions on

m′ guarantee an annulus in Mm free of critical points of infinity. Finally,

in chapter 7, we show that we can construct a von Mangoldt plane that
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is a cone near infinity with m′(r) prescribed.

1.2 Long Introduction

Global Riemannian geometry seeks to relate geometric data to topologi-

cal data. It is often of particular interest if we can show that a certain

set of traits imply that a manifold is topologically finite, i.e. that it is

homeomorphic to the interior of a compact manifold with boundary.

Let M denote a complete noncompact Riemannian manifold; let Mm

denote a rotationally symmetric plane, defined as R2 equipped with a

smooth, complete, rotationally symmetric Riemannian metric given in po-

lar coordinates as gm := dr2+m2(r)dθ2 ; and let o denote the origin in R2 .

In [KT10], the authors generalize the Toponogov Comparison Theorem

to show that if the radial sectional curvature of M from basepoint p is

bounded below by that of a plane Mm with finite total curvature and a

sector free of cut points, then M is topologically finite.

By the critical point theory of distance functions developed by Grove-

Shiohama [Gro93], [Gre97, Lemma 3.1], [Pet06, Section 11.1], topological

finiteness of M would follow once it is shown that the set of critical points

of d(·, p), the distance function to p , is bounded for some p ∈M .

In Theorem 8.4.6 below, we show that finiteness of total curvature in the

above mentioned result of Kondo-Tanaka can be replaced with a weaker

assumption as follows. Set

N := sup{m′(r)} and V (δ) := {q ∈Mm | 0 < θ(q) < δ}.

Theorem 8.4.6. Let the radial curvature of (M, p) be bounded below by

that of Mm with N < ∞ and a sector V (δ) free of cut points. Then M

is topologically finite.
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In Theorem 8.4.7 below, a point q in a Riemannian manifold is called a

critical point of infinity if each unit tangent vector at q makes angle ≤ π
2

with a ray that starts at q ; a geodesic γ : [0,∞) → M is a ray if the

image of γ|[0,s] is distance-minimizing for every s ∈ [0,∞). Also, let N

be as in Theorem 8.4.6.

Theorem 8.4.7. Let the radial curvature of (M, p) be bounded below by

that of Mm with a cut-point-free sector V (δ). Suppose:

1) N = 1

2) Mm is not isometric to R2

3) δ > π
2

Then if p is a critical point of infinity, M is homeomorphic to Rn ,

where n is the dimension of M .

Since the generalized Toponogov Theorem in [KT10] requires that Mm

have a sector free of cut points, it is natural wonder what types of rota-

tionally symmetric planes have this property. One of the main results of

[KT10] is the Sector Theorem, stated below.

Theorem 8.5.14. (Sector Theorem) Let Mm be a noncompact rotation-

ally symmetric plane that is von Mangoldt or Cartan-Hadamard outside

a ball of finite radius R > 0 about o. Also assume Mm has a finite total

curvature. Then Mm has a sector free of cut points.

Remark 1.2.1. In [KT10], the authors introduce the Sector Theorem

with the comment that it “clarifies the real significance of finite total

curvature and the validity of the Main Theorem (of [KT10]).” However,

in our thesis, we show that the condition of finite total curvature in the

Sector Theorem can be dropped altogether.

The set of critical points of infinity of Mm , denoted Cm , is of interest;
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the following corollary of the generalized Toponogov Comparison Theorem

gives one reason to study Cm .

Proposition 8.4.10. Let M be a complete noncompact Riemannian

manifold with radial curvature bounded below by the curvature of a von

Mangoldt plane Mm , and let r , rm denote the distance functions to the

basepoints p, o of M , Mm , respectively. If q is a critical point of r , then

r(q) is contained in rm(Cm).

Combined with the critical point theory of distance functions [Gro93],

[Gre97, Lemma 3.1], [Pet06, Section 11.1], Proposition 8.4.10 implies the

following.

Proposition 1.2.2. In the setting of Lemma 8.4.10, for any c in [a, b] ⊂
rm(Mm–Cm),

• the r−1 -preimage of [a, b] is homeomorphic to r−1(a)× [a, b], and the

r−1 -preimages of points in [a, b] are all homeomorphic;

• the r−1 -preimage of [0, c] is homeomorphic to a compact smooth mani-

fold with boundary, and the homeomorphism maps r−1(c) onto the bound-

ary;

• if K ⊂ M is a compact smooth submanifold, possibly with boundary,

such that r(K) ⊃ rm(Cm), then M is diffeomorphic to the normal bundle

of K .

If Mm is von Mangoldt and Gm(0) ≤ 0, then Gm ≤ 0 everywhere, so ev-

ery point is a pole , defined as a point from which there is a ray emanating

in every possible direction. Hence Cm = Mm , so that Lemma 8.4.10 yields

no information about the critical points of r . Of course, there are other

ways to get this information as illustrated by classical Gromov’s estimate:

if Mm is the standard R2 , then the set of critical points of r is compact;

see e.g. [Gre97, page 109].
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Given a complete noncompact manifold M that is topologically finite,

can we estimate the radius of the subset K ⊂ M that determines the

topology of M ? In particular, can the radius of Cm be determined?

Theorem 5.1.1 below gives what we understand about Cm when Mm has

nonnegative sectional curvature, and parts (iv) and (v) provide a way of

bounding and determining the radius of Cm given that Mm also is von

Mangoldt.

Theorem 5.1.1. Given Mm , suppose Gm ≥ 0. Then

(i) Cm is a closed Rm - ball centered at o for some Rm ∈ [0,∞].

(ii) Rm is positive if and only if
∫∞

1
m−2 is finite.

(iii) Rm is finite if and only if m′(∞) < 1
2

.

(iv) If Mm is von Mangoldt and Rm is finite, then the equation m′(r) =
1
2

has a unique solution ρm , and the solution satisfies ρm > Rm and

Gm(ρm) > 0.

(v) If Mm is von Mangoldt and Rm is finite and positive, then Rm is the

unique solution of the integral equation
∫∞
x

m(x)dr

m(r)
√
m2(r)−m2(x)

= π .

Combining Proposition 8.4.10, Proposition 1.2.2, and Theorem 5.1.1, we

have the following simple estimate:

Proposition 1.2.3. Let M be a complete noncompact Riemannian man-

ifold with radial curvature from the basepoint p bounded below by the cur-

vature of a von Mangoldt plane Mm . If Gm ≥ 0 and m′(∞) < 1
2

, then

M is homeomorphic to the metric ρm -ball centered at p, where ρm is the

unique solution of m′(r) = 1
2

.

Theorem 5.1.1 should be compared with the following results of Tanaka:

• the set of poles in any Mm is a closed metric ball centered at o of

some radius Rp in [0,∞] [Tan92b, Lemma 1.1].



10

• Rp > 0 if and only if
∫∞

1
m−2 is finite and lim inf

r→∞
m(r) > 0 [Tan92a].

• if Mm is von Mangoldt, then Rp is a unique solution of an explicit

integral equation [Tan92a, Theorem 2.1].

It is natural to wonder when the set of poles equals Cm , and we answer

the question when Mm is von Mangoldt.

Theorem 5.2.1. If Mm is a von Mangoldt plane, then

(a) If Rp is finite and positive, then the set of poles is a proper subset

of the component of Cm that contains o.

(b) Rp = 0 if and only if Cm = {o}.

Of course Rp =∞ implies Cm = Mm , but the converse is not true: The-

orem 7.2.1 ensures the existence of a von Mangoldt plane with m′(∞) = 1
2

and Gm ≥ 0, and for this plane Cm = Mm by Theorem 5.1.1, while Rp is

finite by Remark 6.0.5.

We say that a ray γ in Mm points away from infinity if γ and the

segment [γ(0), o ] make an angle < π
2

at γ(0). Define Am ⊂Mm – {o} as

follows: q ∈ Am if and only if there is a ray that starts at q and points

away from infinity; by symmetry, Am ⊂ Cm .

Theorem 5.2.2. If Mm is a von Mangoldt plane, then Am is open in

Mm .

Any plane Mm with Gm ≥ 0 has another distinguished subset, namely

the set of souls, i.e. submanifolds produced via the soul construction of

Cheeger-Gromoll. In fact Cheeger-Gromoll showed that soul construction

can be done on any complete noncompact manifold M with nonnegative

sectional curvature to produce a soul, which is a compact, totally convex,
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boundaryless submanifold S such that M is diffeomorphic to the normal

bundle over S . For example, a soul of any contractible space (such as any

plane Mm ) is isometric to a point, and a soul of the infinite cylinder R
x S1 is isometric to S1 . The existence of a totally convex submanifold is

in itself remarkable in view of the fact that most Riemannian manifolds

do not even contain nontrivial totally geodesic submanifolds ( [ChEb],

Preface).

All souls of any manifold M are isometric to each other. Any subman-

ifold S ′ ⊂ M isometric to a soul is called a pseudo-soul. As the term

suggests, S ′ does not qualify as a soul just because it is isometric to S ;

for S ′ to be a soul, it must be the end result of the soul construction

procedure. So even if we understand the geometry of S , it is still natural

to wonder which submanifolds isometric to S are actually souls of M . We

address this issue with respect to a rotationally symmetric plane Mm :

Theorem 6.0.1. If Gm ≥ 0, then Cm is equal to the set of souls of Mm .

The soul construction takes as input a basepoint p ∈ M , and if M is

contractible and any soul S is therefore a point, the soul construction gives

a continuous family of compact totally convex subsets that starts with S

and ends with M , and according to [Men97, Proposition 3.7] q ∈ M is a

critical point of infinity if and only if there is a soul construction such that

the associated continuous family of totally convex sets drops in dimension

at q . In particular, any point of S is a critical point of infinity, which can

also be seen directly; see the proof of [Mae75, Lemma 1]. In Theorem 6.0.1

we prove conversely that every point of Cm is a soul; for this Mm need

not be von Mangoldt.

In regard to part (iii) of Theorem 5.1.1, it is worth mentioning Gm ≥
0 implies that m′ is non-increasing, so m′(∞) exists, and moreover,

m′(∞) ∈ [0, 1] because m ≥ 0. As we note in Remark 7.1.5 for any von
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Mangoldt plane Mm , the limit m′(∞) exists as a number in [0,∞] . It fol-

lows that any Mm with Gm ≥ 0 and any von Mangoldt plane Mm admits

total curvature, which equals 2π(1 − m′(∞)) and hence takes values in

[−∞, 2π] ; thus m′(∞) = 1
2

if and only if Mm has total curvature π . Stan-

dard examples of von Mangoldt planes of positive curvature are the one-

parametric family of paraboloids, all satisfying m′(∞) = 0 [SST03, Ex-

ample 2.1.4], and the one-parametric family of two-sheeted hyperboloids

parametrized by m′(∞), which takes every value in (0, 1) [SST03, Exam-

ple 2.1.4].

A property of von Mangoldt planes, discovered in [Ele80, Tan92b] and

crucial to our results, is that the cut locus of any q ∈ Mm – {o} is a ray

that lies on the meridian opposite q . (If Mm is not von Mangoldt, its cut

locus is not fully understood, but it definitely can be disconnected [Tan92a,

page 266], and known examples of cut loci of compact surfaces of revolu-

tion [GS79, ST06] suggest that it could be complicated).

As we note in Lemma 4.3.10, if Mm is a von Mangoldt plane, and if q 6=
o , then q ∈ Cm if and only if the geodesic tangent to the parallel through

q is a ray. Combined with Clairaut’s relation this gives the following

“choking” obstruction for a point q to belong to Cm :

Lemma 4.3.11. If Mm is von Mangoldt and q ∈ Cm , then m′(rq) > 0

and m(r) > m(rq) for r > rq , where rq is the r -coordinate of q .

We also show in Lemma 4.3.5 that if Mm is von Mangoldt and Cm 6= o ,

then there exists ρ such that m(r) is increasing and unbounded on [ρ,∞).

The following theorem collects most of what we know about Cm for a

von Mangoldt plane Mm with some negative curvature, where the case

lim inf
r→∞

m(r) = 0 is excluded because then Cm = {o} by Lemma 4.3.11.

Theorem 5.3.1. If Mm is a von Mangoldt plane with a point where

Gm < 0 and such that lim inf
r→∞

m(r) > 0, then
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(1) Mm contains a line and has total curvature −∞;

(2) if m′ has a zero, then neither Am nor Cm is connected;

(3) Mm –Am is a bounded subset of Mm ;

(4) the ball of poles of Mm has positive radius.

In Example 5.3.2 we construct a von Mangoldt plane Mm to which

part (2) of Theorem 5.3.1 applies. In Example 5.3.3 we produce a von

Mangoldt plane Mm such that neither Am nor Cm is connected while

m′ > 0 everywhere. We do not know whether there is a von Mangoldt

plane such that Cm has more than two connected components.

Because of Lemma 8.4.10 and Corollary 1.2.2, one is interested in subin-

tervals of (0,∞) that are disjoint from r(Cm), as e.g. happens for any

interval on which m′ ≤ 0, or for the interval (Rm,∞) in Theorem 5.1.1.

To this end we prove the following result, which is a consequence of The-

orem 5.4.2.

Theorem 5.4.3. Let Mn be a von Mangoldt plane with Gn ≥ 0, n(∞) =

∞, and such that n′(x) < 1
2

for some x. Then for any z > x there exists

y > z such that if Mm is a von Mangoldt plane with n = m on [0, y],

then r(Cm) and [x, z] are disjoint.

In general, if Mm , Mn are von Mangoldt planes with n = m on [0, y] ,

then the sets Cm , Cn could be quite different. For instance, if Mn is a

paraboloid, then Cn = {o} , but by Example 5.3.3 for any y > 0 there is

a von Mangoldt Mm with some negative curvature such that m = n on

[0, y] , and by Theorem 5.3.1 the set Mm –Cm is bounded and Cm contains

the ball of poles of positive radius.

In order to construct a von Mangoldt plane with prescribed Gm it suf-

fices to check that 0 is the only zero of the solution of the Jacobi initial
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value problem (7.1.7) with K = Gm , where Gm is smooth on [0,∞). Pre-

scribing values of m′ is harder. It is straightforward to see that if Mm is

a von Mangoldt plane such that m′ is constant near infinity, then Gm ≥ 0

everywhere and m′(∞) ∈ [0, 1]. We do not know whether there is a von

Mangoldt plane with m′ = 0 near infinity, but all the other values in (0, 1]

can be prescribed:

Theorem 7.2.1. For every s ∈ (0, 1] there is ρ > 0 and a von Mangoldt

plane Mm such that m′ = s on [ρ,∞).

Thus each cone in R3 can be smoothed to a von Mangoldt plane, but

we do not know how to construct a (smooth) capped cylinder that is von

Mangoldt.

1.3 Structure of the Thesis

Basic definitions, concepts, and theorems are discussed in chapters 2 and

3. In particular, section 2.5.3 culminates in a much-used theorem by M.

Tanaka, and chapter 3 outlines the proof of the Soul Theorem. From

section 4.3 of chapter 4 on to the end of the thesis, most of the results are

our own work. In chapter 4, sections 4.1 and 4.2, we discuss the Clairaut

relation and the Turn Angle Formula, important tools for analyzing the

behavior of geodesics in a rotationally symmetric plane, Mm . The rest of

chapter 4 from section 4.3 on presents various lemmas on the behavior of

geodesics in Mm, used to prove our results in chapters 5 and 6. Chapter

5 presents our results on the geometry and topology of the set of critical

points infinity in Mm . In chapter 6 we show that the set of souls in Mm

is equal to the set of critical points of infinity of Mm . In chapter 7 we

discuss how we can prescribe the slope of m(r) near infinity when Mm is

von Mangoldt. Chapter 8 presents our improvements on results in [KT10],
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discussed above.
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Chapter 2

Basic Facts and Definitions

We discuss ideas that are building blocks to our work. Especially central

to our results is Theorem 2.5.23, which describes an important attribute of

von Mangoldt planes. Many of the definitions and remarks in this chapter

are closely modeled on expositions in [Car], [GrWal] [Lee], and [SST03].

Definition 2.0.1. Let M be a smooth manifold, let TpM be the tan-

gent space of a point p ∈ M , and let x :U ⊂ Rn → M be a system of

coordinates around p , with x(x1, x2, ..., xn) = q ∈ x(U) and ∂
∂xi

(q) =

dxq(0, ..., 1, ..., 0). A Riemannian metric on M is a correspondence that

associates to TpM an inner product 〈·, ·〉p such that 〈 ∂
∂xi

(q), ∂
∂xj

(q)〉q =

gij(x1, ..., xn) is a differentiable function on U .

Definition 2.0.2. M is a Riemannian manifold if it is a smooth mani-

fold equipped with a Riemannian metric. We sometimes use the notation

(M, g) to denote a smooth manifold M paired with a Riemannian metric

g .

Definition 2.0.3. A smooth curve γ : [a, b]→ M is a geodesic if, given

any point p on γ , there exists an ε neighborhood of p on γ such that if

x , y are in the neighborhood, the length of the subsegment of γ joining

x and y is ≤ the length of every other curve joining x and y . This is
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equivalent to saying that γ is a geodesic if and only if ∇γ̇ γ̇ ≡ 0, where ∇
is the Riemannian connection associated with M .

A curve γ : [a, b] → M is a minimal geodesic if the length of γ is ≤
the length of every other curve on M joining γ(a) and γ(b); that is, the

length of γ equals d(γ(a), γ(b)), where the distance function is derived

from the Riemannian metric specific to M . We sometimes say that γ is

distance-minimizing between γ(a) and γ(b).

Remark 2.0.4. As an example differentiating a non-minimal geodesic

from a minimal geodesic, consider a sphere of radius R . The image of

any complete geodesic in a sphere is a great circle (i.e. a circle of radius

R), but only subarcs of length ≤ πR in the great circles are images of

minimal geodesics; if any arc in a great circle exceeds length πR , then it

will not minimize the distance between its endpoints.

Definition 2.0.5. A Riemannian manifold M is complete if, given any

p ∈ M , any geodesic γ(t) starting from p is defined for all values of the

parameter t ∈ R . Equivalently, M is complete if it is complete as a metric

space. Completeness of M implies that given any p, q ∈ M , there exists

a minimal geodesic joining p to q . As an example of a space that is not

complete, consider R2\{0} . For any t ∈ R , there does not exist a minimal

geodesic joining p = (t, t) to q = (−t,−t).

Remark 2.0.6. Throughout this thesis, every Riemannian manifold M

will be assumed to be complete and noncompact.

Definition 2.0.7. Given any point q ∈ M and a geodesic γ emanating

from q = γ(0), we say that q′ = γ(s0), s0 > 0 is a cut point of q if γ is a

minimal geodesic on [0, s] for all s ≤ s0 but is not minimal for all s > s0 .

The collection of all cut points of q is called the cut locus of q . If γ is

the only geodesic connecting any q, q′ ∈M , then it must be minimal. On
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the other hand, if two minimal geodesics emanating from q meet at some

q′ 6= q , they are not minimal beyond q′ .

Definition 2.0.8. A geodesic γ : [0,∞) → M is a ray if, for every t1 ,

t2 ∈ [0,∞), γ minimizes the distance between γ(t1) and γ(t2). A geodesic

γ : (−∞,∞)→ M is a line if, for every t1 , t2 ∈ (−∞,∞), γ minimizes

the distance between γ(t1) and γ(t2).

Remark 2.0.9. Every point p ∈ M (assumed to be noncompact and

complete) has at least one ray emanating from it. Indeed, since M is

noncompact, there exists a sequence of points {qn} such that d(p, qn)→∞
as n → ∞ . Let γn be a minimal geodesic connecting p to qn . The

sequence {γn} must subconverge to a geodesic γ , and γ must be a ray

since the function

f : {v ∈ TqM ; |v| = 1} → R+ ∪ {∞}, v 7→ sup{t > 0; d(p, exp(tv)) = t}

is continuous.

Definition 2.0.10. Let M and N be Riemannian manifolds. We say

that M and N are isometric, or that φ : M → N is an isometry, if

φ is a diffeomorphism and 〈u, v〉p = 〈dφ(u), dφp(v)〉φ(p) for all p ∈ M ,

u, v ∈ TpM . In particular, the distance between any two points p, p′

in M equals the distance between φ(p), φ(p′) in N . Loosely speaking,

isometry means equivalence between two spaces to a geometer, even as

isomorphism and homeomorphism mean equivalence between two spaces

to an algebraist or a topologist, respectively.

Definition 2.0.11. Let M be a Riemannian manifold, p an arbitrary

point in M , and γ an arbitrary geodesic passing through p . We define

the exponential function at p, expp : TpM → M , by expp(v) = γ(|v|),

where v
|v| = γ̇(0).
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Definition 2.0.12. A point q ∈M is a critical point of infinity if, given

any v ∈ TqM (the tangent space of q ), there exists a ray γ emanating

from q such that ](γ̇(0), v) ≤ π
2

.

Definition 2.0.13. In a complete Riemannian manifold M , a point p is

a pole if every geodesic emanating from p is a ray. Clearly the set of poles

is a subset of the set of critical points of infinity in any manifold.

2.1 Notations and Conventions

All geodesics are parametrized by arclength. Minimal geodesics of finite

length will sometimes be called segments. We will use Mm to denote

a rotationally symmetric plane (see Section 2.4). Given R2 , let ∂r , ∂θ

denote the vector fields dual to dr , dθ , and let o denote the origin. Given

q 6= o , denote its polar coordinates by θq , rq . Let γq , µq , τq denote the

geodesics defined on [0,∞) that start at q in the direction of ∂θ , ∂r , −∂r ,

respectively. We refer to τq|(rq ,∞) as the meridian opposite q ; note that

τq(rq) = o . Also set κγ(s) := ∠(γ̇(s), ∂r).

We write ṙ , θ̇ , γ̇ , κ̇ for the derivatives of rγ(s) , θγ(s) , γ(s), κγ(s) by s ,

while m′ denotes dm
dr

, and proceed similarly for higher derivatives.

Let κ̂(rq) denote the maximum of the angles formed by µq and rays

emanating from q 6= o ; let ξq denote the ray with ξq(0) = q for which the

maximum is attained, i.e. such that κξq(0) = κ̂(rq).

A geodesic γ in Mm – {o} is called counterclockwise if d
ds
θγ(s) > 0 and

clockwise if d
ds
θγ(s) < 0 for some (or equivalently any) s . A geodesic

in Mm is clockwise, counterclockwise, or can be extended to a geodesic

through o . If γ is clockwise, then it can be mapped to a counterclockwise

geodesic by an isometric involution of Mm .
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Unless stated otherwise, any geodesic in Mm that we consider is either

tangent to a meridian or counterclockwise. Due to this convention the

Clairaut constant and the turn angle defined below are nonnegative, which

will simplify notations.

2.2 Sectional Curvature

Definition 2.2.1. Let M be a Riemannian manifold of dimension 2 or

higher and q a point in M . Clearly two arbitrary vectors X, Y in TqM

determine a 2-dimensional subspace S ⊂ TqM . We define the sectional

curvature, G(X, Y ), with respect to this subspace to be

G(X, Y ) :=
Rm(X, Y, Y,X)

|X|2|Y |2 − g(X, Y )2
,

where g is the metric defined on TqM , and Rm , called the Riemannian

curvature tensor defined on M , is defined as

Rm(X, Y, Z,W ) := 〈R(X, Y )Z,W 〉,

where

R(X, Y )Z := ∇X∇YZ −∇Y∇XZ − (XY − Y X)Z.

Convention: From this point on, curvature will always mean sectional

curvature.

Remark 2.2.2. Below are examples that can be helpful:

1) The curvature at every point in Rn , n ≥ 2, is 0.

2) The curvature at every point in a metric sphere, in the induced Rie-

mannian metric, is constant and positive.
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3) Consider the hyperbola {x, y, z : x2

a2
− z2

b2
= 1; y = 0} . When we

revolve this hyperbola about the z -axis, we obtain a one-sheeted hyper-

boloid, and the curvature at every point on such a surface is negative in

the induced Riemannian metric. In fact, the curvature at any “saddle

point” is negative.

Definition 2.2.3. Given any 2-dimensional Riemannian manifold M and

the corresponding (sectional) curvature function G , we define the total

curvature of M , c(M), as

c(M) :=

∫
M

GdM =

∫
M

G+dM +

∫
M

G−dM,

provided ∫
M

G+dM <∞ or

∫
M

G−dM > −∞,

where for any q ∈M ,

G+(q) := max{0, G(q)}, G−(q) := min{0, G(q)},

and dM is the area element of M . If the inequalities above hold, we say

that M admits total curvature.

Remark 2.2.4. In [CoVo], S. Cohn-Vossen proved that if M is a con-

nected, complete, non-compact, finitely connected 2-dimensional Rieman-

nian manifold admits a total curvature c(M), then c(M) ≤ 2πχ(M),

where χ(M) is the so-called Euler characteristic. If M is homeomorphic

to R2 , then χ(M) = 1, so c(M) ≤ 2π . Hence, a rotationally symmetric

plane Mm has finite total curvature if and only if c(M) > −∞ .

2.3 The Gauss-Bonnet Theorem

The Gauss-Bonnet Theorem is one of the most beautiful theorems in ge-

ometry. Below we give the version that we use for our results.
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Theorem 2.3.1. Assume M is homeomorphic to R2 . If P ⊂M is a poly-

gon with n edges each of which is an arc of a geodesic, and if θ1, θ2, ..., θn

are the internal angles of P , then the following holds:
n∑
i=1

θi = (n− 2)π +

∫
P

GdM

If P is a triangle, the sum of the interior angles equals π +
∫
P
GdM . If

the triangle is in R2 (with the standard Euclidean metric, which renders

G ≡ 0), we recover the familiar fact that the interior angles of a triangle

in a Euclidean plane add up to π .

2.4 Rotationally Symmetric Planes

We will always use Mm to denote a rotationally symmetric plane. We de-

fine a rotationally symmetric plane Mm as follows: For a smooth function

m : [0,∞) → [0,∞) whose only zero is 0, let gm denote the rotationally

symmetric inner product on the tangent bundle to R2 that equals the

standard Euclidean inner product at the origin and elsewhere is given in

polar coordinates by dr2 + m(r)2dθ2 . It is well-known (see e.g. [SST03,

Section 7.1]) that

• any rotationally symmetric complete smooth Riemannian metric on

R2 is isometric to some gm ; as before Mm denotes (R2, gm);

• if m̄ : R → R denotes the unique odd function such that m̄|[0,∞) =

m , then gm is a smooth Riemannian metric on R2 if and only if

m′(0) = 1 and m̄ is smooth;

• if gm is a smooth metric on R2 , then gm is complete, and the sec-

tional curvature of gm is a smooth function on [0,∞) that equals

−m′′

m
.
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A meridian is a curve µ : [0,∞) → M emanating from the origin, o ,

with θ̇ ≡ 0. A parallel is any locus of points on M with r ≡ a constant,

or equivalently, any locus of points equidistant from the origin.

Every geodesic emanating from o is a meridian; in fact, every meridian is

a ray. On the other hand, a parallel is a geodesic if and only if m′(r0) = 0,

where r0 is the distance from the parallel to the origin [SST03, Lemma

7.1.4].

2.5 The Cut Locus in a von Mangoldt Plane

This section culminates in Theorem 2.5.23, which has been central to our

research. We start with concepts and theorems used in Theorem 2.5.23 as

well as in other parts of this thesis.

Definition 2.5.1. Mm is a von Mangoldt plane if Gm(r) is non-increasing

in r . Examples of von Mangoldt planes are two-sheeted hyperboloids and

paraboloids.

2.5.1 Conjugate and Focal Points

The notions of conjugate points and focal points are founded on un-

derstanding the effect of curvature on nearby geodesics. Our discussion

below is closely modeled on expositions in [Lee], [Car].

Let γ : [a, b] → M be a geodesic. Then Γ : (−ε, ε) × [a, b] → M is a

variation through geodesics if each of the curves Γs(t) = Γ(s, t) is also a

geodesic. Now put ∂Γ
∂s

(0, t) = J(t). It is well known that the variation

field J(t) satisfies the Jacobi equation :

J ′′ +R(J, γ̇)γ̇ = 0, (2.5.2)
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where

J ′ = ∇ ∂
∂s
J and J ′′ = ∇ ∂

∂s
∇ ∂

∂s
J.

Any vector field J along a unit-speed geodesic γ that satisfies the above

equation is called a Jacobi field, and every Jacobi field along a geodesic γ

is the variation field of some variation of γ through geodesics.

Given a geodesic γ joining p, q ∈ M , we say that q is conjugate to

p along γ if there is a Jacobi field along γ vanishing at p and q but

not identically zero. That is, if p, q are conjugate, there exists a field of

variation through geodesics not identically zero that vanishes at p and

q . If q is conjugate to p along γ , then γ cannot be a minimal geodesic

beyond p .

The idea of conjugate points extends to the idea of a focal point to a

submanifold N ⊂M . Given a geodesic γ : [0, `] :→M with γ(0) = q ∈ N
and γ̇(0) ∈ (TqM)⊥ , consider the geodesic variation

Γ : (−ε, ε)× [0, `]→M

such that for s ∈ (−ε, ε) and t ∈ [0, `] , each Γs(t) is a geodesic, Γs(0) =

α(s) ∈ N , and

A(s) =
∂Γ

∂t
(s, 0) ∈ (Tα(s)N)⊥.

It is well known that J(t) = ∂Γ
∂s

(0, t) is a Jacobi field along γ . If J(t)

is not everywhere zero on γ|[0,`] , then the point q′ = γ(`) is called a focal

point of N if J(`) = 0.

2.5.2 The Sturm Comparison Theorem

Below we give a statement of the Sturm Comparison Theorem:
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Theorem 2.5.3. Let the functions f1(t) and f2(t) be continuous on

[0,∞), and assume f1(t) ≥ f2(t). For each fi(t), i = 1, 2, let ui(t)

be the solution to

u′′i (t) + fi(t)ui(t) = 0, (2.5.4)

where ui = 0 and u′i = 1 at t = 0. Also let a1, a2 be the first zeros after

t = 0 of u1(t) and u2(t) respectively. Then we have

a2 ≥ a1 and u2(t) ≥ u1(t) (2.5.5)

for any t ∈ [0, a1].

2.5.3 The Structure of a Cut Locus in a Rotationally

Symmetric Plane

We start with some preliminaries; this section culminates in Theorem

2.5.23. The discussion below is based on expositions in [SST03].

For any q ∈ M , let Cq denote the cut locus of q . For any x ∈ Cq ,

let Γ(q, x) denote the set of minimal geodesics connecting q to x . Unless

otherwise stated, we will assume that the cut locus of any point consists

of more than one point.

Definition 2.5.6. Let ε be small enough so that Bε(x) is a convex ball.

We define a sector as a component of Bε(x)\Γ(x, q); If |Γ(q, x)| = n <∞ ,

then there exist n sectors at x . The angle at x for each sector is called

an inner angle .

Definition 2.5.7. A Jordan arc is an injective continuous map from an

open or closed interval of R into M .

Definition 2.5.8. A subset T of M is a tree if any two points are

connected with a unique Jordan arc. A point x ∈ T is an endpoint if

T \ x remains connected.
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Theorem 2.5.9. (Consequence of Theorem 4.2.1, [SST03]) If M is a

complete simply connected 2-manifold, then Cq is a tree for each q ∈M .

Lemma 2.5.10. (Lemma 4.3.7, [SST03]) A point x in the cut locus of

any q ∈M is an endpoint of the cut locus if and only if x admits exactly

one sector.

Remark 2.5.11. If x ∈ Cq admits only one sector, then x must be

conjugate to q .

Definition 2.5.12. Let x be a cut point of q ∈ M . Then x is a normal

cut point of q if there exist exactly two minimal geodesics connecting q to

x and if x is not a first conjugate point of q along either of the geodesics.

Lemma 2.5.13. (Proposition 4.2.2, [SST03]) If x ∈ Cq is a normal cut

point, then near x, Cq is a smooth curve bisecting each of the inner angles

of the two sector at x.

Lemma 2.5.14. (Lemma 7.3.2, [SST03]) Given q ∈ Mm with θq = 0,

assume that for x1, x2 ∈Mm ,

rx1 = rx2 , 0 ≤ θx1 < θx2 ≤ π.

Then d(q, x1) < d(q, x2).

Lemma 2.5.15. (Corollary 4.2.1, [SST03]) The set of normal cut points

is open dense in Cq .

Lemma 2.5.16. (Lemma 7.3.2, [SST03]) Suppose Mm is von Mangoldt.

If Cq 6= ∅ for any q ∈ Mm , then q is conjugate along τq to some point

τq(t0).

Lemma 2.5.17. (Originally a part of Theorem 2.5.23, by M. Tanaka)

Suppose q ∈Mm and Cq 6= ∅. Then τq[t0,∞) ⊂ Cq , where τq(t0) > d(q, o)

is the first conjugate point of q along τq .
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Proof. It is clear that t0 > d(q, o) because all meridians are rays, and

the meridian emanating from o and going through q must be the unique

minimal geodesic connecting the two points. By Lemma 2.5.16, there

exists t0 ∈ (d(q, o),∞) such that τq(t0) is the first conjugate point of q

along τq . A geodesic does not minimize beyond its first conjugate point,

so for all t > t0 , there exists a minimal geodesic α connecting q to τq(t)

that is distinct from τq . Through the involution on Mm fixing µq ∪ τq , we

obtain the mirror-image minimal geodesic β also connecting q to τq(t),

implying that τq is the cut point of α, β . Since the above applies to all

t > t0 , we have τq[t0,∞) ⊂ Cq .

Lemma 2.5.18. Given q ∈ Mm , let c : [0, a]→ Cq be a Jordan arc con-

necting an endpoint c(0) of Cq to a point c(a) ∈ Cq ∩ τq . Let c(tn) be a

normal cut point in c(0, a], and let α, β be the two minimal geodesics con-

necting q to c(tn). Then the image of α, β must bound a region containing

c[0, tn).

Proof. By construction α, β bound a region R . By Lemma 2.5.13, near

c(tn), Cq is a smooth curve bisecting the inner angles of the two sectors

at c(tn). Hence for ε > 0 small enough, c(tn − ε, tn) lies in R . Since

α, β are distance-minimizing, they cannot intersect Cq in their interiors.

Hence c[0, tn) must lie in R .

Lemma 2.5.19. Given q ∈ Mm , let c : [0, a]→ Cq be a Jordan arc such

that c(0) is an endpoint of Cq , c[0, a) ∩ τq = ∅, and c(a) ∈ τq . Let c(t0)

be a cut point and c(tn) a normal cut point such that 0 < t0 < tn < a.

Then θc(tn) > θc(t0) .

Proof. Let α, β be the two minimal geodesics connecting q to c(tn). By

Lemma 2.5.18, α, β bound a region whose interior contains c[0, tn). Hence,

there exists a point t ∈ (0, d(q, c(tn))) at which either α or β , say α ,
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achieves θα(t) > θc(t0) . Since α cannot be tangent to a meridian, θ̇α(s) > 0

always. The claim follows.

Lemma 2.5.20. Given q ∈ Mm , let c : [0, a]→ Cq be a Jordan arc such

that c(0) is an endpoint of Cq , c[0, a) ∩ τq = ∅, and c(a) ∈ Cq . Let c(t0)

be a cut point and c(tn) a normal cut point such that 0 ≤ t0 < tn < a.

Then d(q, c(tn)) > d(q, c(t0)).

Proof. Let α, β be the two minimal geodesics joining q to c(tn). By

Lemma 2.5.19, we have θc(tn) > θc(t0) . Now either rc(tn) = rc(t0) or rc(tn) 6=
rc(t0) . If the former holds, then by Lemma 2.5.14 we have d(q, c(tn)) >

d(q, c(t0)). If the latter holds, since α, β enclose a region whose interior

contains c(t0), one of the two geodesics must have a subarc that passes

through a point p in the parallel containing c(t0) such that θp > θc(t0) .

Lemma 2.5.14 gives us d(q, c(tn)) = d(q, p) + d(p, c(tn)) > d(q, c(t0)).

Remark 2.5.21. Under the setting of Lemma 2.5.20, let γ be a minimal

geodesic connecting q to c(t0) and let α, β be the two minimal geodesics

connecting q to c(tn). Note that α, β cannot intersect γ other than

at q and that by Lemma 2.5.18, α, β bound a region R whose interior

contains c[0, tn). So R must also contain γ(0, d(q, c(t0))] in its interior. In

particular, for one of α, β , say β , we have ](τ̇q(0), β̇(0)) < ](τ̇q(0), γ̇(0)).

Lemma 2.5.22. Given q ∈ Mm , let c : [0, a]→ Cq be a Jordan arc such

that c(0) is an endpoint of Cq , c[0, a) ∩ τq = ∅, and c(a) ∈ Cq . Then the

distance function d(q, c(t)) is strictly increasing on (0, a).

Proof. Let c(t1) be any point in c[0, a). It suffices for us to show that

given any t2 > t1 , d(q, c(t1)) < d(q, c(t2)). Since by Lemma 2.5.15 normal

cut points are dense in Cq and d(q, c(t)) is a continuous on t , it suffices

to show that for any normal cut point c(t2) with 0 ≤ t1 < t2 < a ,

d(q, c(t1)) < d(q, c(t2)). But this is true by Lemma 2.5.20.



29

We now present the main theorem of this section:

Theorem 2.5.23. (M. Tanaka; Theorem 7.3.1, [SST03]) If Mm is a von

Mangoldt plane, then for any point q ∈ Mm , the cut locus of q equals

τq[t0,∞), where τq(t0) is the first conjugate point of q along τq .

Proof. By Lemma 2.5.17, we already have τ [t0,∞) ⊂ Cq , so we just need

to show Cq ⊂ τ [t0,∞). We first show that Cq ⊂ τq(d(o, q),∞) through

contradiction. Every meridian is a ray emanating from o , so no point of

τq(0, d(q, o)] ∪ µq(0,∞) can be a cut point. By Theorem 2.5.9, Cq is a

tree, so if we assume that Cq * τq(d(o, p),∞), there must be an endpoint

x of Cq with θx < π . By Remark 2.5.11, q is conjugate to x .

Let α be a minimal geodesic connecting q to x . By Lemma 2.5.22

there exists a normal cut point y ∈ Cq such that θx < θy < π and

d(q, y) > d(q, x). By Remark 2.5.21 there exists a minimal geodesic β

connecting q to y such that ](τ̇q(0), β̇(0)) < ](τ̇q(0), α̇(0)).

Our strategy is to show that if s ∈ (0, `(α)), then rα(s) > rβ(s) ; thus

we can establish that Gm(rα(s)) ≤ Gm(rβ(s)) and then apply the Sturm

Comparison Theorem to derive a contradiction.

For each s ∈ (0, `(α)), since θy > θx , there exists a unique value t(s) of

β giving us

θα(s) = θβ(t(s)).

Since α, β cannot intersect in their interiors we have rβ(t(s)) < rα(s) . Hence

for any given s , the set

Ss := {t ∈ (0, `(β)) | rβ(t) < rα(s)}

is nonempty. Now fix s0 ∈ (0, `(α)). Let (a, b) be the connected compo-

nent of Ss0 containing t(s0). If we show that s0 ∈ (a, b), then we will have
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rα(s0) > rβ(s0) . If (0, `(α)) ⊆ (a, b) then s0 ∈ (a, b) and there is nothing

to prove, so we can assume a > 0 or b < `(α).

We have

rα(s0) = rβ(a) = rβ(b), 0 ≤ θβ(a) < θα(s0) = θβ(t(s0)) < θβ(b) < π

so the conditions for Lemma 2.5.14 are satisfied. It follows that

a = d(q, β(a)) < s0 = d(q, α(s0)) < d(q, β(b)) = b,

implying s0 ∈ (a, b) and therefore rβ(s0) < rα(s0) . Since s0 was arbitrary

and since Mm is von Mangoldt, this gives us Gm(rα(s)) ≤ Gm(rβ(s)) for

all s ∈ [0, `(α)]. Recalling that q is conjugate to x along α and applying

the Sturm Comparison Theorem, we have that q is conjugate to β(t)

along β for some t ∈ (0, `(α)]. But this is impossible, since β minimizes

the distance from q to y and `(β) > `(α). This establishes that Cq ⊂
τq(d(q, o),∞).

It remains for us to show that τq(d(q, o), t0) ∩ Cq = ∅ . Proceeding

by contradiction, suppose there exists d(q, o) < t < t0 such that x :=

τq(t) is a cut point of q along τq . Since q is not conjugate to x along

τq , there exists a geodesic γ emanating from q , different from τq , that

also minimizes the distance to x ; note that τq and γ bound a relatively

compact domain R . There exists a geodesic σ emanating from q that

lies in R for small t . Since τq, γ are minimizing up to x , the cut point

of σ cannot be in their interior and; hence σ must intersect x . But since

σ can be any geodesic that lies in R for small t , this implies that q is

conjugate to x along τq , a contradiction.
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Chapter 3

The Soul Theorem

Some of our main results in chapters 5 and 6 pertain to the set of souls

in a rotationally symmetric plane of nonnegative sectional curvature. We

therefore present below the Soul Theorem, including an outline of its proof.

Our discussion is based on information in [ChEb] and [GrWal]. The Soul

Theorem is as follows:

Theorem 3.0.1. (Soul Theorem) Let M be a noncompact complete Rie-

mannian manifold with everywhere nonnegative sectional curvature. Then

there exists a compact, totally convex, boundaryless submanifold S ⊂ M,

called a soul, such that M is homeomorphic to the normal bundle over S .

Remark 3.0.2. In this chapter, it will always be assumed that M has

everywhere nonnegative sectional curvature.

Remark 3.0.3. We start with some preliminaries. Theorems 3.0.6 and

3.0.10 below are special cases of the corresponding original theorems,

adapted for our needs. Theorem 3.0.10 is due to Berger but is often

called the Second Rauch Comparison Theorem.

Definition 3.0.4. Given any q ∈M , we say that r > 0 is the injectivity

radius at q if r is the largest value for which the exponential function

maps Br(0) ⊂ TqM diffeomorphically onto Br(q) ⊂M .
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Definition 3.0.5. Consider two segments γ1, γ2 that meet at a point p

such that γ1(`(γ1)) = γ2(0) = p , and let θ := π −](γ̇1(`(γ1)), γ̇2(0)). We

say that γ1, γ2 is a hinge and that θ is the angle formed by the hinge.

Theorem 3.0.6. (Rauch I; Theorem 3.2.1, [GrWal]) Let γi : [0, 1]→M ,

i = 1, 2, be a hinge at q , and suppose `(γi) is less than the injectivity

radius at q . Then the distance between γ1(1) and γ2(1) is less than or

equal to the distance between the endpoints of the comparison angle with

same lengths and angle in R2 .

Definition 3.0.7. A subset S ⊂M is totally geodesic if every geodesic

in S is also a geodesic in M .

Definition 3.0.8. We say that a vector field X along a curve γ is a

parallel vector field along γ if ∇γ̇X ≡ 0. If γ is a geodesic, γ̇ is a parallel

vector field along γ .

Definition 3.0.9. A subset S ⊂M is said to be flat if the curvature is

everywhere zero on S .

Theorem 3.0.10. (Rauch II; Theorem 3.2.2, [GrWal]) Let c : [0, a] →
M be a geodesic, X a parallel vector field along c, and γ : [0, a] → M

the curve given by γ(t) = expc(t) X(t). If for all s ∈ (0, 1) none of the

geodesics s 7→ exp sX(t) has a focal point, then `(γ) ≤ a. If furthermore

`(γ) = a, then the region defined by

V : [0, a]× [0, 1]→M, (t, s) 7→ expc(t) sX(t)

is totally geodesic and flat.

(See Section 2.5.1 for discussion on focal points.)
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Theorem 3.0.11. (Toponogov Comparison Theorem; Theorem 3.2.3, [GrWal])

Let γi be the sides of a geodesic triangle in M , and let θi be the angle

opposite γi , i = 0, 1, 2. Assume γ1 , γ2 are minimal geodesics that satisfy

`(γ1)+ `(γ2) ≥ `(γ0). Then there exists a triangle in R2 with sides γ̃i and

angles θ̃i such that `(γi) = `(γ̃i) for all i and θi ≥ θ̃i for i = 1, 2.

Remark 3.0.12. We now outline the proof of the Soul Theorem, which is

essentially a procedure, often called soul construction, that can be applied

to any noncompact manifold M of nonnegative curvature to obtain a

soul.

1) Fix a point p ∈ M and a ray γ emanating from p . Recall from

Remark 2.0.9 that if M is noncompact and complete, then every point of

M has at least one ray emanating from it.

Definition 3.0.13. Given a ray γ emanating from q ∈ M , we define a

horoball for γ as

Bγ :=
⋃
t>0

Bt(γ(t)),

where

Bt(γ(t)) := {q ∈M | d(γ(t), q) < t}.

Note that Bt1(γ(t1)) ⊂ Bt2(γ(t2)) for t1 < t2 .

2) Theorem 3.0.15 is the fundamental ingredient of soul construction.

Definition 3.0.14. A set S ∈M is totally convex if any geodesic in M

connecting two points of S lies entirely in S .

Theorem 3.0.15. (Theorem 3.2.4, [GrWal]) M \ Bγ is a closed totally

convex set.
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Proof. Since Bγ is open, M \ Bγ is closed. We prove total convexity by

contradiction. Suppose there exists a geodesic α : [0, 1] → M such that

α(0), α(1) ∈ M \ Bγ but α(s) ∈ Bγ for some s ∈ (0, 1). It follows from

definitions that there exists some t0 > 0 such that γ(s) ∈ Bt0(γ(t0)).

Note that t0 > d(γ(t0), α(s)); set ε := t0 − d(α(s), γ(t0)). We have for all

t ≥ t0

d(α(s), γ(t)) ≤ t− ε. (3.0.16)

Fix some t such that

t > max{t0, `(α),
`2(α)

ε
}. (3.0.17)

Let s0 be the value at which α is closest to γ(t). Set α0 := α|[0,s0] , let

γ0 be a minimal geodesic joining α(0) to γ(t), and let γs0 be a minimal

geodesic joining α(s0) to γ(t). Note that the above geodesics define a

triangle. Let θ denote the angle at α(s0); note that since α(s0) is the point

in α closest to γ(t) and s ∈ (0, 1), θ = π
2

. We will apply the Toponogov

theorem to derive a contradiction regarding the measure of θ . Our triangle

satisfies the inequality in the condition of the Toponogov theorem: Since

α(0) /∈ Bγ , we have `(γ0) > t , implying `(γ0) + `(γs0) > t > `(α) > `(α0).

Hence we conclude that there exists a comparison triangle in R2 such that

θ̃ ≤ θ = π
2

.

On the other hand, (3.0.16) and (3.0.17) give us

`(γs0) ≤ t− ε < `(γ0)− ε.

Now we apply the law of cosines in R2 :

cos θ̃ =
`2(α0) + `2(γs0)− `2(γ0)

2`(α0)`(γs0)
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=
`(γs0) + `(γ0)

2`(γs0)
· `(γs0)− `(γ0)

`(α0)
+

`(α0)

2`(γs0)

<
1

2`(γs0)
(`(α0)− ε`(γs0) + `(γ0)

`(α0)
) <

1

2`(γ1)
(`(γ0)− εt

`(γ0)
) < 0,

where the last inequality holds because by (3.0.17),

`2(α0)

ε
<
`2(α)

ε
< t,

implying

`(α0) < ε
t

`(α0)
.

But this is impossible, since cos θ̃ < 0 implies θ̃ > π
2

.

3) We now construct a compact, totally convex set. Namely, the set

C0 :=
⋂
{M \Bγ | γ is a ray, γ(0) = p}

is closed, compact, and totally convex. Indeed, if C0 is not compact, then

there exists a sequence of points qn ∈ C0 with d(q, qn) → ∞ . Let γn

denote a minimal geodesic in C0 joining q to qn . Then {γn} must sub-

converge to a ray γ , which is impossible by the way C0 was constructed.

4) Next, we contract the set C0 while preserving total convexity. For a

closed totally convex set C0 with boundary and α ≥ 0, define

Cα
0 := {q ∈ C0 | d(q, ∂C0) ≥ α}, C1 :=

⋂
{Cα

0 | Cα
0 6= ∅}.

We want to prove the following theorem:

Theorem 3.0.18. (Corollary 3.2.1, [GrWal]) Cα
0 and C1 are totally con-

vex, and dim C1 < dim C0 .
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Theorem 3.0.18 is implied by the following theorem:

Theorem 3.0.19. (Theorem 3.2.5, [GrWal]) Let C be a closed totally

convex set with boundary in M . Then given any geodesic γ : [a, b] → C ,

the distance function

f : C → R, γ(t) 7→ d(γ(t), ∂C), t ∈ [a, b]

to the boundary is concave. Furthermore, for any geodesic γ in C ,

assume that f ◦ γ is equal to a constant d on some interval [a, b] and

consider the parallel vector field X along γ , where t 7→ exp tX(a) is a

minimal geodesic from γ(a) to ∂C . Then for any s ∈ [a, b], t 7→ exp tX(s)

is a minimal geodesic of length d from γ(s) to ∂C , and the rectangle

V : [a, b]× [0, d]→ C, (s, t) 7→ expγ(s) tX(s)

is flat and totally geodesic.

The proof of Theorem 3.0.19 is based on the following idea. Let γ :

[α, β]→ C be a geodesic. Establish concavity of f ◦γ by showing that on

a neighborhood of any s0 ∈ (α, β), f ◦ γ is bounded above by the linear

function s 7→ (f ◦ γ)(s0)− (cosφ)(s− s0), where φ is the angle formed by

γ and the geodesic segment γs0 connecting γ(s0) to ∂C . Theorems 3.0.6

(Rauch I) and 3.0.10 (Rauch II) are key to this proof.

Theorem 3.0.19 implies that Cα
0 is convex for all α ≥ 0 in the following

way: if γ[0, d] were a geodesic such that γ(0), γ(d) ∈ Cα
0 but γ(s) /∈ Cα

0

for some s ∈ (0, d), then f ◦γ would have an absolute minimum on (0, d),

which is impossible for a concave function.

5) If C1 has nonempty boundary, we can repeat the above procedure

finitely many times to obtain a compact, totally convex submanifold S

without boundary. S is a soul of M .
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Remark 3.0.20. A submanifold S ′ ⊂ M is a soul only if it is the end

result of the soul construction process; the fact that M is diffeomorphic

to the normal bundle over S ′ does not in itself make S ′ a soul of M .

Remark 3.0.21. Determining the set of souls of a manifold is usually

nontrivial because determining the set of rays emanating from a point is

generally difficult. This holds true when the M is a rotationally symmetric

plane, even though we already know that each soul is isometric to a point,

since every rotationally symmetric plane is diffeomorphic to R2 .
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Chapter 4

Geodesics and Rays

In this chapter, we present our observations on the behavior of geodesics,

with special emphasis on rays, in rotationally symmetric plane Mm . Most

of the results in sections 4.3 and 4.4 are ours, and they are crucial to iden-

tifying the souls and critical points of infinity in Mm , since determining

whether a point p ∈ Mm is in either category entails analyzing the set of

rays emanating from p . Some of our observations below are also used for

our results in chapter 8.

4.1 The Clairaut Relation

Below is a statement of a theorem used very often in this thesis, discovered

by Alexis Clairaut:

Theorem 4.1.1. Let γ be a geodesic in a rotationally symmetric plane

Mm such that γ does not intersect the origin. Let κγ(s) := ](γ̇(s), ∂r).

Then there exists a constant c such that m(r) sinκγ(s) = c for all s.

The equality in the conclusion of the theorem above is call Clairaut′s

relation . Following is an outline of the proof.
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If γ : I → Mm , γ(s) = (r(s), θ(s)) is a geodesic that does not intersect

the origin, then it satisfies the differential equations

r̈ −mm′θ̇2 = 0, θ̈ + 2
m′ṙθ̇

m
= 0,

where m′ is the derivative with respect to r and θ̇ , ṙ are derivatives with

respect to s (and likewise for θ̈, r̈).

Note that the second geodesic equation implies

d

ds
(m2(r(s))θ̇(s) = 0, (m2(r(s))θ̇(s) = c

where c is some constant. This equation can be rewritten as

m(r) sinκγ(s) = c.

Remark 4.1.2. Since 0 ≤ sinκγ(s) ≤ 1 for all s , 0 ≤ c ≤ m(rγ(s)) where

c = m(rγ(s)) only at points where γ is tangent to a parallel and c = 0

when γ is tangent to a meridian.

4.2 The Turn Angle Formula

For a geodesic γ : (s1, s2) → M that does not pass through o , we define

the turn angle Tγ as

Tγ :=

∫
γ

dθ =

∫ s2

s1

ds = θγ(s2) − θγ(s1).

From our work in deriving Clairaut’s relation, we have θ̇ = c
m2 ≥ 0, so

the integral above converges to a number in [0,∞] . We wish to develop
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a formula for obtaining the value of Tγ given rγ(s1) and rγ(s2) . Since γ is

unit speed, we have

(
dr

ds

)2

+

(
m(r)

dθ

ds

)2

= 1.

This gives us

(
ds

dθ

)2(
dr

ds

)2

=

{
1−

(
m(r)

dθ

ds

)2
}(

ds

dθ

)2

=⇒
(
dr

dθ

)2

=

(
dθ

ds

)2

−m(r).

Recalling ds
dθ

= m2(r(s))
c

and making substitution, we have

(
dr

dθ

)2

=

(
m2(r(s))

c

)2

−m2(r) =⇒ dθ

dr
= sign

(
dθ

dr

)
c

m(r)
√
m2(r)− c2

.

Sign
(
dθ
dr

)
is a nonzero constant if γ is not tangent to a parallel or merid-

ian, so putting

Fc :=
c

m(r)
√
m2(r)− c2

,

we have

Tγ = sign(
dθ

dr
)

∫ rγ(s2)

rγ(s1)

Fcdr (4.2.1)

Since c2 ≤ m2 , this integral is finite except possibly when some ri :=

rγ(si) is in the set {m−1(c),∞} . The integral converges at ri = m−1(c)

if and only if m′(ri) 6= 0. Convergence of the integral at ri = ∞ implies

convergence of
∫∞

1
m−2dr , and the converse holds under the assumption

limr→∞ inf m(r) > c ; this assumption is true when Gm ≥ 0 or G′m ≤ 0,

as follows from Lemma 4.3.5 below.
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Example 4.2.2. If γ is a ray in Mm that does not pass through o , then

Tγ ≤ π ; else there exists s with |θγ(s) − θγ(0)| = π , and by symmetry the

points γ(s), γ(0) are joined by two segments, so γ would not be a ray.

Example 4.2.3. If Tγq is finite, then m′(rq) 6= 0 and m−2 is integrable

on [1,∞), as follows immediately from our above discussion.

Remark 4.2.4. A geodesic is called escaping if its image is unbounded.

In particular, rays are escaping geodesics. An example of a non-escaping

geodesic is a parallel that is also a geodesic. A geodesic γ is tangent to

a parallel at γ(s0) if and only if ṙγ(s0) = 0. If ṙγ(s) vanishes more than

once, then γ is not escaping because it is invariant under a rotation of

Mm about o [SST03, Lemma 7.1.6] and therefore not escaping. Hence, a

ray is tangent to a parallel at most once.

4.3 Various lemmas and theorems

Lemma 4.3.1. If γq is escaping, then m(r) > m(rq) for all r > rq , and

m′(rq) > 0.

Proof. Since γq is escaping, the image of s → rγq(s) contains [rq,∞),

and q is the only point where γq is tangent to a parallel. The Clairaut

constant of γq is c = m(rq), hence m(r) > m(rq) for all r > rq . It follows

that m′(rq) ≥ 0. Finally, m′(rq) 6= 0 else γq would equal the parallel

through q .

Lemma 4.3.2. If γ is an escaping geodesic that is tangent to the parallel

Pq through q , then γ \ {q} lies in the unbounded component of Mm \ Pq .

Proof. By reflectional symmetry and uniqueness of geodesics, γ locally

stays on the same side of parallel Pq through q , i.e. γ is the union of
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γq and its image under the reflection fixing µq ∪ τq . If γ could cross to

the other side of Pq at some point γ(s), then |rγ(s) − rq| would attain a

maximum between γ(s) and q , and at the maximum point γ would be

tangent to a parallel. Since γ is escaping, it cannot be tangent to parallels

more than once, hence γ stays on the same side of Pq at all times, and

since γ is escaping, it stays in the unbounded component of Mm \Pq .

Lemma 4.3.3. If γ : [0,∞) → Mm is a geodesic with finite turn angle,

then γ is escaping.

Proof. Note that γ is tangent to parallels in at most two points, for oth-

erwise γ is invariant under a rotation about o , and hence its turn angle

is infinite. Thus after cutting off a portion of γ we may assume that it is

never tangent to a parallel, so that rγ(s) is monotone. By assumption θγ(s)

is bounded and increasing. By Clairaut’s relation m(rγ(s)) is bounded be-

low, so that m(0) = 0 implies that rγ(s) is bounded below. If γ were not

escaping, then rγ(s) would also be bounded above, so there would exist a

limit of (rγ(s), θγ(s)) and hence the limit of γ(s) as s→∞ , contradicting

the fact that γ has infinite length.

Remark 4.3.4. The lemma below presents observations on the relation-

ship between nonnegative or nonincreasing curvature and the shape of

Mm .

Lemma 4.3.5. If m−2 is integrable on [1,∞), then

(1) the function (r log r)−
1
2m(r) is unbounded;

(2) if Gm ≥ 0, then m′ > 0 for all r ;

(3) if Mm is von Mangoldt, then m′ > 0 for all large r ;

(4) if either Gm ≥ 0 or G′m ≤ 0, then m(∞) =∞.
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Proof. Since m−2 is integrable, the function (r log r)−
1
2m(r) is unbounded,

and in particular, m is unbounded. If Gm ≥ 0 everywhere, then m′ is

nonincreasing with m′(0) = 1, and the fact that m is unbounded im-

plies that m′ > 0 for all r . If Mm is von Mangoldt, and Gm(ρ0) < 0,

then Gm < 0 for r ≥ ρ0 , i.e. m′ is nondecreasing on [ρ0,∞). Since

m is unbounded, there exists ρ > ρ0 with m(ρ) > m(ρ0) such that∫ ρ
ρ0
m′ = m(ρ) −m(ρ0) > 0. Hence m′ is positive somewhere on (ρ0, ρ),

and therefore on [ρ,∞). Finally, since m is an unbounded increasing

function for large r , the limit limr→∞m(r) = m(∞) exists and equals ∞ .

Lemma 4.3.6. If γq is escaping, then lim infr→∞m(r) > m(rq) if and

only if there is a neighborhood U of q such that γu is escaping for each

u ∈ U .

Proof. First, recall that m(r) > m(rq) for r > rq and m′(rq) > 0 by

Lemma 4.3.1. We shall prove the contrapositive: lim infr→∞m(r) = m(rq)

if and only if there is a sequence ui → q such that γui is not escaping.

If there is a sequence zi ∈Mm with rzi →∞ and m(rzi)→ m(rq), then

there are points ui → q on µq with m(rui) = m(rzi). If γui is escaping,

then it meets the parallel through zi , so Clairaut’s relation implies that

γui is tangent to the parallels through ui and zi , which cannot happen

for an escaping geodesic.

Conversely, suppose there are ui → q such that γi := γui is not escaping.

Let Ri be the radius of the smallest ball about o that contains γi , and

let Pi be its boundary parallel. Note that Ri → ∞ as γi converges to

γq on compact sets and γq is escaping, and hence lim infr→∞m(r) =

limr→∞m(Ri). For each i there is a sequence si,j such that the r -

coordinates of γi(si,j) converge to Ri , which implies κγi(si,j) → π
2

as
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j → ∞ and i is fixed. (Note that if γi is tangent to Pi , then si,j is

independent of j , namely, γ(si,j) is the point of tangency.) By Clairaut’s

relation, m(Ri) = m(rui), hence lim infr→∞m(r) = m(rq).

Remark 4.3.7. Recall that if Mm is von Mangoldt, the cut locus of any

q 6= o is contained in the opposite meridian. Lemmas 4.3.8 to 4.3.11 make

use of this fact in establishing rules of behavior for rays in a von Mangoldt

plane.

Lemma 4.3.8. If Mm is von Mangoldt, then a geodesic γ : [0,∞) →
Mm \ {o} is a ray if and only if Tγ ≤ π .

Proof. The “only if” direction holds even when Mm is not von Mangoldt

by Example 4.2.2. Conversely, if γ is not a ray, then γ meets the cut

locus of q , which is a subset of the opposite meridian τγ(0)|(rγ(0),∞) . Thus

Tγ > π .

Lemma 4.3.9. If γ is a ray in a von Mangoldt plane, and if σ is a

geodesic with σ(0) = γ(0) and κγ(0) > κσ(0) , then σ is a ray and Tσ ≤ Tγ .

Proof. Set q = γ(0). If κγ(0) = π , then γ = γq , so τq is a ray, which in

a von Mangoldt plane implies that q is a pole [SST03, Lemma 7.3.1], so

that σ is also a ray. If κγ(0) < π and σ is not a ray, then σ is minimizing

until it crosses the opposite meridian τq|(rq ,∞) by Theorem 2.5.23. Near q

the geodesic σ lies in the region of Mm bounded by γ and µq , and hence

before crossing the opposite meridian σ must intersect γ or µq , so they

would not be rays. Finally, Tσ ≤ Tγ holds as σ lies in the sector between

γ and µq .

Lemma 4.3.10. If Mm is von Mangoldt and q 6= o, then γq is a ray if

and only if q ∈ Cm .
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Proof. If γq is a ray, then q ∈ Cm by symmetry. If q ∈ Cm , then either q

is a pole and there is a ray in every direction, or q is not a pole. If q is not

a pole, τq is not a ray [SST03, Lemma 7.3.1], hence by the definition of

Cm there is a ray γ with κγ(0) ≥ π/2, so γq is a ray by Lemma 4.3.9.

Lemma 4.3.11. If Mm is von Mangoldt and q ∈ Cm , then m′(rq) > 0

and m(r) > m(rq) for r > rq .

Proof. Immediate from Lemmas 4.3.1 and 4.3.10.

Remark 4.3.12. Recall that κ̂(rq) is the maximum of the angles formed

by µq and rays emanating from q 6= o , and ξq is the ray for which the

maximum is attained. It is immediate from definitions that q ∈ Cm if and

only if κ̂(rq) ≥ π
2

. Lemmas 4.3.13 to 4.3.15 focus on the behavior of ξq

and κ̂(rq). They were suggested by the referee for the paper on which

part of this thesis is based.

Lemma 4.3.13. Cm 6= {o} if and only if lim infr→∞m(r) > 0 and∫∞
1
m−2 is finite.

Proof. The “if” direction holds because by the main result of [Tan92a] the

assumptions imply that the ball of poles has a positive radius. Conversely,

if q ∈ Cm \ {o} , then ξq is a ray different from µq . By [Tan92a, Lemma

1.3, Proposition 1.7] if either lim inf
r→∞

m(r) = 0 or
∫∞

1
m−2 = ∞ , then µq

is the only ray emanating from q .

Lemma 4.3.14. ξq is the limit of the segments [q, τq(s)] as s→∞.

Proof. The segments [q, τq(s)] subconverge to a ray σ that starts at q .

Since ξq is a ray, it cannot cross the opposite meridian τq|(rq ,∞) . As

[q, τq(s)] and ξq are minimal, they only intersect at q , and hence the
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angle formed by µq and [q, τq(s)] is ≥ κ̂(rq). It follows that κσ(0) ≥ κ̂(rq),

which must be an equality as κ̂(rq) is a maximum, so σ = ξq .

Lemma 4.3.15. The function r → κ̂(r) is left continuous and upper

semicontinuous. In particular, the set {q : κ̂(rq) < α} is open for every

α.

Proof. If κ̂ is not left continuous at rq , then there exists ε > 0 and a

sequence of points qi on µq such that rqi → rq− and either κ̂(rqi)−κ̂(rq) >

ε or κ̂(rq)− κ̂(rqi) > ε . In the former case ξqi subconverge to a ray that

makes a larger angle with µq than ξq , contradicting the maximality of

κ̂(rq). In the latter case, ξqi intersects ξq for some i . Therefore, by

Lemma 4.3.14 the segment [qi, τq(s)] intersects [q, τq(s)] for large enough

s at a point z 6= τq(s), so τq(s) is a cut point of z , which cannot happen

for a segment. This proves that κ̂ is left continuous. A similar argument

shows that lim sup
rqi→rq+

κ̂(rqi) ≤ κ̂(rq), so that κ̂ is upper semicontinuous,

which implies that {q : κ̂(rq) < α} is open for every α .

Remark 4.3.16. Lemmas 4.3.8 and 4.3.10 imply that on a von Mangoldt

plane κ̂rq ≥ π
2

if and only if Tγq ≤ π ; the equivalence is sharpened in

Theorem 4.3.29. The lemmas below are needed for Theorem 4.3.29.

Lemma 4.3.17. If σ is escaping and 0 < κσ(0) ≤ π
2

, then Tσ =
∫∞
rq
Fc(r)dr ;

moreover, if κσ(0) = π
2

, then c = m(rq).

Proof. This formula for Tσ is immediate from 4.2.1 once it is shown that

σ|(0,∞) is not tangent to a meridian or a parallel. If σ|(0,∞) were tangent

to a meridian, κσ(0) would be 0 to π , which is not the case. Since σ

is escaping, by Remark 4.2.4, σ is tangent to parallels at most once. If

κσ(0) = π
2

, then σ is tangent to the parallel through σ(0), and so σ|(0,∞) is

not tangent to a parallel. If κσ(0) <
π
2

, then σ is not tangent to a parallel,
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else it would be tangent to a parallel through u with ru > rq , which would

imply rσ(s) ≤ ru for all s by Lemma 4.3.2, which cannot happen for an

escaping geodesic.

Remark 4.3.18. To better understand the relationship between κ̂(rq)

and Tγq , we study how Tσ depends on σ , or equivalently on σ(0) and

κσ(0) , when σ varies in a neighborhood of a ray γq .

Lemma 4.3.19. If Gm ≥ 0 or G′m ≤ 0, then the function u → Tγu is

continuous at each point u where Tγu is finite.

Proof. If Tγu is finite, then γu is escaping by Lemma 4.3.3, and hence

Tγu =
∫∞
ru
Fm(ru) by Lemma 4.3.17. We need to show that this integral

depends continuously on ru .

By Lemma 4.3.1, Lemma 4.3.5, and the discussion preceding Example

4.2.2, the assumptions on Gm and the finiteness of Tγu imply that m(r) >

m(ru) for r > ru , m−2 is integrable, m′(ru) > 0, and m(∞) =∞ . Hence

there exists δ > ru with m′|[ru,δ] > 0 and m(r) > m(δ) for r > δ ; it is

clear that small changes in u do not affect δ .

Write
∫∞
ru
Fm(ru) =

∫ δ
ru
Fm(ru) +

∫∞
δ
Fm(ru) . On [ru, δ] we can write

Fm(ru) = h(r, ru)(r− ru)−
1
2 for some smooth function h . Since (r− ru)−

1
2

is the derivative of 2(r − ru)
1
2 , one can integrate Fm(ru) by parts, which

easily implies continuous dependence of
∫ δ
ru
Fm(ru) on ru .

Continuous dependence of
∫∞
δ
Fm(ru) on ru follows because Fm(ru) is

continuous in ru and is dominated by Km−2 , where K is a positive

constant independent of small changes in ru .

Remark 4.3.20. Next we focus on the case when σ(0) is fixed, while κσ(0)

varies near π
2

. To get an explicit formula for Tσ we need the following.
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Lemma 4.3.21. If Mm is von Mangoldt, and γq is a ray, then there

exists ε > 0 such that every geodesic σ : [0,∞)→Mm with σ(0) = q and

κσ(0) ∈ [π
2
, π

2
+ ε] is tangent to a parallel exactly once, and if u is the point

where σ is tangent to a parallel, then m′ > 0 on [ru, rq].

Proof. If κσ(0) = π
2

, then σ = γq , so it is tangent to a parallel only at q ,

as rays are escaping. If κσ(0) >
π
2

, then σ converges to γq on compact

subsets as ε → 0, so for a sufficiently small ε the geodesic σ crosses the

parallel through q at some point σ(s) such that κσ(s) <
π
2

. Since γq is

a ray, rotational symmetry and Lemma 4.3.9 imply that σ|[s,∞) is a ray,

so σ is escaping. Thus σ is tangent to a parallel at a point u where rσ(s)

attains a minimum and is not tangent to a parallel at any other point by

Remark 4.2.4. Finally, ru = limε→0 rq , and since m′(rq) > 0 by Lemma

4.3.11, we get m′ > 0 on [ru, rq] for small ε .

Remark 4.3.22. Under the assumptions of Lemma 4.3.21 the Clairaut

constant c of σ equals m(ru) = m(rq) sinκσ(0) , and the turn angle of σ

is given by

Tσ =

∫ ∞
rq

Fm(rq)(r)dr if κσ(0) =
π

2
and (4.3.23)

Tσ =

∫ ∞
ru

Fc(r)dr−
∫ ru

rq

Fc(r)dr =

∫ ∞
rq

Fc(r)dr+ 2

∫ rq

ru

Fc(r)dr (4.3.24)

if π
2
< κσ(0) <

π
2

+ ε . These integrals converge, i.e. Tσ is finite, as follows

from Example 4.2.3, and Lemmas 4.3.5, 4.3.21.

Since any geodesic σ with σ(0) = q and κσ(0) ∈ [0, π
2

+ ε] has finite

turn angle, one can think of Tσ as a function of κσ(0) where σ varies over

geodesics with σ(0) = q and κσ(0) ∈ [ 0, π
2

+ ε] .
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Remark 4.3.25. Lemma 4.3.27 below is an elementary lemma on the

continuity and differentiability of the integrals 4.3.23-4.3.24, needed for

Lemma 4.3.28. We start with some preparatory comments.

Given numbers rq > r0 > 0, let m be a smooth self-map of (0,∞) such

that

• m′ > 0 on [r0, rq] ,

• m(r) > m(rq) for r > rq ,

• m−2 is integrable on (1,∞),

• lim inf
r→∞

m(r) > m(rq).

Example 4.3.26. Suppose Gm ≥ 0 or G′m ≤ 0. If γq is a ray on Mm ,

and r0 is sufficiently close to rq , then m satisfies the above properties by

Lemma 4.3.1, Example 4.2.3, Lemma 4.3.5.

Set c0 := m(r0) and cq := m(rq). Let T = T (c) be the function given

by the integral (4.3.23) for c = cq , and by the sum of integrals (4.3.24) for

c0 ≤ c ≤ cq , where Fc is given by (4.2.1) and ru := m−1(c), where m−1

is the inverse of m|[r0,rq ] .

Lemma 4.3.27. Under the assumptions of the previous paragraph, T is

continuous on (c0, cq], continuously differentiable on (c0, cq), and T ′(c)
√
c2
q − c2

converges to − 1
m′(rq)

< 0 as c→ cq−.

Proof. By definition T equals
∫∞
rq
Fc +

∫ rq
ru
Fc if c ∈ [c0, cq) and T =∫∞

rq
Fc if c = cq . Step 1 shows that

∫∞
rq
Fc depends continuously on

c ∈ [c0, cq] , while Step 2 establishes continuity of T at cq . In Steps 3–4

we prove continuous differentiability and compute the derivatives of the

integrals
∫∞
rq
Fc ,

∫ rq
ru
Fc with respect to c ∈ (c0, cq). Step 5 investigates

the behaviour of T ′(c) as c→ cq .
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Recall that the integral
∫ b
a
Hc(r)dr depends continuously on c if for

each r ∈ (a, b) the map c → Hc(r) is continuous, and every c has a

neighborhood U0 in which |Hc| ≤ h0 for some integrable function h0 . If

in addition each map c → Hc(r) is C1 , and every c has a neighborhood

U1 where |∂Hc
∂c
| ≤ h1 for an integrable function h1 , then

∫ b
a
Hc(r)dr is C1

and differentiation under the integral sign is valid; the same conclusion

holds when Hc and ∂Hc
∂c

are continuous in the closure of U1 × (a, b).

Step 1. The integrand Fc is smooth over (ru,∞), because the assump-

tions on m imply that m(r) > c for r > ru .

Since 0 < c ≤ cq we have Fc ≤ Fcq = cq

m
√
m2−c2q

which is integrable

on (rq,∞). Indeed, fix δ > rq and note that since m−2 is integrable

on (δ,∞), so is Fcq . To prove integrability of Fcq on (rq, δ), note that

h(r) := m(r)−m(rq)

r−rq is positive on [rq,∞), as h(rq) = m′(rq) > 0 and

m(r) > m(rq) for r > rq . Then Fcq is the product of (r − rq)−1/2 and a

function that is smooth on [rq, δ] , and hence Fcq is integrable on (rq, δ).

Thus the integrals
∫ δ
rq
Fc(r)dr and

∫∞
δ
Fc(r)dr depend continuously on

c ∈ (0, cq] , and hence so does their sum
∫∞
rq
Fc(r)dr .

Step 2. As c → cq , the integral
∫ rq
ru
Fc converges to zero, for if K is

the maximum of (mm′
√
m+ c)−1 over the points with r ∈ [r0, rq] and

c ∈ [c0, cq] , then ∫ rq

ru

Fc ≤ K

∫ rq

ru

m′dr√
m− c

= K

∫ cq−c

0

dt√
t

which goes to zero as c→ cq . Thus T is continuous at c = cq .

Step 3. To find an integrable function dominating ∂Fc
∂c

on (rq,∞) lo-

cally in c , note that every c ∈ (c0, cq) has a neighborhood of the form

(c0, cq − δ) with δ > 0, and over this neighborhood

∂Fc
∂c

=
m

(m2 − c2)3/2
≤ m

(m2 − (cq − δ)2)3/2
,
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where the right hand side is integrable over [rq,∞), as m−2 is integrable

at ∞ ; thus
d

dc

∫ ∞
rq

Fc =

∫ ∞
rq

m

(m2 − c2)3/2
dr

is continuous with respect to c ∈ (c0, cq). This integral diverges if c =

m(rq).

Step 4. To check continuity of
∫ rq
ru
Fc change variables via t := m

c

so that r = m−1(tc). Thus dt = m′(r)dr
c

= n(tc)dr
c

where n(r) :=

m′(m−1(r)), and∫ rq

ru

Fc(r)dr =

∫ cq/c

1

F̄c(t)dt where F̄c(t) =
1

n(tc) t
√
t2 − 1

.

Since m′ > 0 on [r0, rq] and n(tc) = m′(r), the function F̄c is smooth over

(1, cq
c

). To prove continuity of
∫ cq/c

1
F̄c , fix an arbitrary (u, v) ⊂ (c0, cq). If

c ∈ (u, v) and t ∈ (1, cq
c

), then m−1(tc) lies in the m−1 -image of (u, v
u
cq),

which by taking the interval (u, v) sufficiently small can be made to lie

in an arbitrarily small neighborhood of [r0, rq] , so we may assume that

m′ > 0 on that neighborhood. It follows that the maximum K of 1
n(tc)

over c ∈ [u, v] and t ∈ [1, cq
c

] is finite, and |F̄c| ≤ K
t
√
t2−1

for c ∈ (u, v), i.e.

|Fc| is locally dominated by an integrable function that is independent of

c ; for the same reason the conclusion also holds for ∂F̄c
∂c

= − n′(tc)

n(tc)2
√
t2−1

.

Finally, given c∗ ∈ (c0, cq) fix δ ∈ (1, cq
c∗

), and write
∫ cq/c

1
F̄c =

∫ δ
1
F̄c +∫ cq/c

δ
F̄c for c varying near c∗ . The first summand is C1 at c∗ , as the

integrand and its derivative are dominated by the integrable function near

c∗ . The second summand is also C1 at c∗ as the integrand is C1 on a

neighborhood of {c∗} × [δ, cq
c

] . By the integral Leibnitz rule

d

dc

∫ cq/c

1

F̄c = −cq
c2
F̄c

(cq
c

)
−
∫ cq/c

1

n′(tc) dt

n(tc)2
√
t2 − 1

.

The first summand equals −(m′(rq)
√
c2
q − c2)−1 , and the second summand

is bounded.
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Step 5. Let us investigate the behavior of
∫∞
rq

m
(m2−c2)3/2

dr from Step 3

as c → cq− . Fix δ > rq such that m′ > 0 on [r0, δ] and write the above

integral as the sum of the integrals over (rq, δ) and (δ,∞). The latter one

is bounded. Integrate the former integral by parts as∫ δ

rq

mm′

m′ (m2 − c2)3/2
dr = −

∫ δ

rq

1

m′
d

(
1√

m2 − c2

)
=

1

m′(rq)
√
c2
q − c2

− 1

m′(δ)
√
δ2 − c2

−
∫ δ

rq

m′′ dr

(m′)2
√
m2 − c2

Only the first summand is unbounded as c→ cq− . The terms from Step 4

and 5 enter into T ′ with coefficients 2 and 1, respectively, so as c→ cq−

T ′(c)
√
c2
q − c2 → − 1

m′(rq)
< 0

as the bounded terms multiplied by
√
c2
q − c2 disappear in the limit.

Lemma 4.3.28. If Mm is von Mangoldt, and γq is a ray, then there

exists δ > π
2

such that the function κσ(0) → Tσ is continuous and strictly

increasing on [π
2
, δ], and continuously differentiable on (π

2
, δ]; moreover,

the derivative of Tσ is infinite at π
2

.

Proof. The Clairaut constant c of σ equals m(ru) = m(rq) sinκσ(0) , so

the assertion is immediate from Lemma 4.3.27.

Theorem 4.3.29. If Mm is von Mangoldt and q 6= o, then

(1) κ̂(rq) >
π
2

if and only if Tγq < π .

(2) κ̂(rq) = π
2

if and only if Tγq = π .

Proof. (1) If κ̂(rq) >
π
2

, then any geodesic σ with σ(0) = q and κσ(0) ∈
[π

2
, κ̂(rq)] is a ray, and so has turn angle ≤ π . By Lemma 4.3.28, the turn

angle is increasing at π
2

, so Tγq < π . Conversely if Tγq < π , then by
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Lemma 4.3.28, the turn angle is continuous at π
2

, so any geodesic σ with

σ(0) = q and κσ(0) near π
2

has turn angle < π , and is therefore a ray, so

κ̂(rq) >
π
2

.

(2) follows from (1) and the fact that κ̂(rq) ≥ π
2

if and only if Tγq ≤
π .

Remark 4.3.30. Below are two theorems, not proved by us, that are

used to prove our results. The statement of the first is tailored to our

special situation.

Lemma 4.3.31. ([SST03, Lemma 6.1.1]) Assume that Mm contains no

line. Then, for each compact subset K of Mm , there exists a number

R(K) such that if q ∈ Mm satisfies d(q,K) > R(K), then no ray ema-

nating from q passes through any point on K .

Remark 4.3.32. Theorem 4.3.34 is the famous Splitting Theorem, proved

by J. Cheeger and D. Gromoll in 1971. (See [Pet06] for full discussion.)

Definition 4.3.33. We define Ricci curvature as follows: Given a unit

vector u ∈ TpM , complete it to an orthonormal basis {u, e2, ..., en} ⊂
TpM . Then the Ricci curvature with respect to u equals

∑n
i=2 G(u, ei),

where G(u, ei) is the sectional curvature of the 2-dimensional subspace

of TpM spanned by u, ei . In the case of Mm , since it is a 2-dimensional

surface, Gm ≥ 0 implies that the Ricci curvature ≥ 0.

Theorem 4.3.34. (Theorem 3.8, [Pet06]) If a Riemannian manifold M

contains a line and has Ricci curvature ≥ 0, then M is isometric to a

product H × R , where H has Ricci curvature ≥ 0.
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4.4 Planes of Nonnegative Curvature

A key consequence of Gm ≥ 0 is the monotonicity of the turn angle and

of κ̂ .

Proposition 4.4.1. Suppose that Mm has Gm ≥ 0. If 0 < ru < rv and

γu has finite turn angle, then Tγu ≤ Tγv with equality if and only if Gm

vanishes on [ru,∞].

Proof. The result is trivial when G is everywhere zero. Since γu has

finite turn angle, m−2 is integrable, and hence m is a concave function

with m′ > 0 and m(∞) =∞ by Lemma 4.3.5.

Set x := rq , so that the turn angle of γq is
∫∞
x
Fm(x) . As m′ > 0, we

can change variables by t := m(r)/m(x) or r = m−1(tm(x)) so that∫ ∞
x

Fm(x)(r) dr =

∫ m(∞)
m(x)

1

dt

l(t, x) t
√
t2 − 1

=

∫ ∞
1

dt

l(t, x) t
√
t2 − 1

where l(t, x) := m′(r). Computing

∂l(t, x)

∂x
= m′′(r)

∂r

∂x
=
m′′(r) tm′(x)

m′(r)
= −G(r)

tm′(x)

m′(r)
≤ 0

we see that l(t, x) is non-increasing in x . Thus if ru < rv , then l(t, ru) ≥
l(t, rv) for all t implying Tγu ≤ Tγv . The equality occurs precisely when

l(t, x) is constant on [1,∞)×[ru, rv] , or equivalently, when G(m−1(tm(x)))

vanishes on [1,∞) × [ru, rv] , which in turn is equivalent to G = 0 on

[ru,∞), because tm(x) takes all values in (m(ru),∞) so m−1(tm(x))

takes all values in (ru,∞).

Lemma 4.4.2. If Gm ≥ 0, then κ̂ is non-increasing in r .

Proof. Let u1, u2, v be points on µv with 0 < ru1 < ru2 < rv . By

Lemma 4.3.14 the ray ξui is the limit of geodesics segments that join
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ui with points τv(s) as s→∞ . The segments [u1, τv(s)], [u2, τv(s)] only

intersect at the endpoint τv(s) for if they intersect at a point z , then z

is a cut point for τv(s), so [τv(s), ui] cannot be minimizing. Hence the

geodesic triangle with vertices u1 , v , τv(s) contains the geodesic triangle

with vertices u2 , v , τv(s). Since Gm ≥ 0, the former triangle has larger

total curvature, which is finite as Mm has finite total curvature. As m

only vanishes at 0, concavity of m implies that m is non-decreasing.

If m is unbounded, Clairaut’s relation implies that the angles at τv(s)

tend to zero as s→∞ . By the Gauss-Bonnet theorem κξ1(0)−κξ2(0) equals

the total curvature of the “ideal” triangle with sides ξ1 , ξ2 , [u1, u2] . Thus

κ̂(ru1) ≥ κ̂(ru2) with equality if and only if Gm vanishes on [ru1 ,∞).

If m is bounded, then
∫∞

1
m−2 = ∞ , so by [Tan92a, Proposition 1.7]

the only ray emanating from q is µq so that κ̂ = 0 on Mm \ {o} . For

future use note that in this case the angle formed by µq = ξq and [q, τq(s)]

tends to zero as s→∞ , so Clairaut’s relation together with boundedness

of m imply that the angle at τq(s) in the bigon with sides [q, τq(s)] and

τq also tends to zero as s→∞ .

Remark 4.4.3. By the above proof if Gm ≥ 0 and m−2 is integrable on

[1,∞), then κ̂(r1) = κ̂(r2) for some r2 > r1 if and only if Gm vanishes on

[r1,∞).
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Chapter 5

Critical Points of Infinity in a

Rotationally Symmetric Plane

Chapter 5 presents our results on the set of critical points of infinity in a

rotationally symmetric plane Mm . In the case where Mm has everywhere

nonnegative sectional curvature, we show in chapter 6 that a point p ∈M
is a critical point of infinity if and only if it is a soul, so Theorem 5.1.1

applies in the same way to the set of souls as it does to the set of critical

points of infinity.

5.1 Critical Points of Infinity when Curva-

ture is Nonnegative

Our understanding of Cm is most complete when Gm ≥ 0:

Theorem 5.1.1. Given Mm , suppose Gm ≥ 0. Then

(i) Cm is a closed Rm - ball centered at o for some Rm ∈ [0,∞].

(ii) Rm is positive if and only if
∫∞

1
m−2 is finite.

(iii) Rm is finite if and only if m′(∞) < 1
2

.

(iv) If Mm is von Mangoldt and Rm is finite, then the equation m′(r) =
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1
2

has a unique solution ρm , and the solution satisfies ρm > Rm and

Gm(ρm) > 0.

(v) If Mm is von Mangoldt and Rm is finite and positive, then Rm is the

unique solution of the integral equation
∫∞
x

m(x)dr

m(r)
√
m2(r)−m2(x)

= π .

Proof. (i) Since rays converge to rays, Cm is closed. If any q 6= o is in

Cm , rotational symmetry implies that the parallel containing q is in Cm .

By Lemma 4.4.2, if q′ 6= o lies on any parallel below q , κ̂(rq′) ≥ κ̂(rq),

implying that q′ must be in Cm . Finally, we know that o ∈ Cm .

(ii) Since m is concave and positive, it is non-decreasing, so lim inf
r→∞

m >

0, and the claim follows from Lemma 4.3.13.

(iii) We prove the contrapositive, that Mm = Cm if and only if m′(∞) ≥
1
2
. The latter is equivalent to c(Mm) ≤ π , since c(Mm) = 2π(1−m′(∞)).

Note that the total curvature of a subset Z ⊂ Mm must take on a value

in [0, 2π] .

Suppose c(Mm) ≤ π . Fix q 6= o , and consider the segments [q, τq(s)]

that by Lemma 4.3.14 converge to ξq as s → ∞ . Consider the bigon

bounded by [q, τq(s)] and its symmetric image under the reflection that

fixes τq ∪ µq . As in the proof of Lemma 4.4.2 we see that the angle at

τq(s) goes to zero as s → ∞ , so the sum of angles in the bigon tends

to 2(π − κ̂(rq)). By the Gauss-Bonnet theorem, the sum of the angles of

the bigon for each s equals
∫
int(B)

G ≤ c(Mm) ≤ π , where int(B) is the

interior of the bigon. We conclude that κ̂(rq) ≥ π
2

, so q ∈ Cm .

Conversely, suppose that Cm = Mm . Given ε > 0, find a compact

rotationally symmetric subset K ⊂ Mm with c(K) > c(Mm) − ε . Fix

q 6= o and consider the rays ξµq(s) as s → ∞ . If all these rays intersect

K , then they subconverge to a line by Lemma 4.3.31, so by Theorem

4.3.34, Mm is the standard R2 (with the Euclidean metric dx2 + dy2 ),
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and c(Mm) = 0 < π . Thus we can assume that there exists a point v on

the ray µq such that ξv is disjoint from K . Therefore, if s is large enough,

then K lies inside the bigon bounded by [v, τv(s)] and its symmetric image

under the reflection that fixes τq ∪µq . The sum of the angles in the bigon

tends to 2(π − κ̂(rv)), and by the Gauss-Bonnet theorem it is bounded

below by c(K). Since v ∈ Cm , we have κ̂(rv) ≥ π
2

, and hence c(K) ≤ π .

Thus c(Mm) < π + ε , and since ε is arbitrary, we get c(Mm) ≤ π , which

completes the proof of (iii).

(iv) Since Rm is finite, m′(∞) < 1
2

by part (iii). As m′(0) = 1, the

equation m′(x) = 1
2

has a solution ρm . As Gm ≥ 0, the function m′

is nonincreasing, so uniqueness of the solution is equivalent to positivity

of Gm(ρm). Since Mm is von Mangoldt, Gm(ρm) > 0, for otherwise Gm

would have to vanish for r ≥ ρm , implying m′(∞) = m′(ρm) = 1
2
, and

Rm would be infinite, a contradiction.

Now we show that ρm > Rm . This is clear if Rm = 0 because ρm ≥ 0

and m′(0) = 1 6= 1
2

= m′(ρm). In the case where Rm > 0, we prove our

claim by showing that Tγv > π for any v ∈ Mm with rv ≥ ρm , for by

Lemma 4.3.10, since Mm is von Mangoldt, this would imply that v /∈ Cm .

Recall that if Rm > 0, then m−2 is integrable by Lemma 4.3.13, so m′ > 0

everywhere by the proof of Lemma 4.3.5. Hence for any rv ≥ ρm , we have

m(rv) ≥ m(ρm), which implies tm(rv) > m(ρm) for all t > 1. Thus

m−1(tm(rv)) > m−1(m(ρm)) = ρm . Applying m′ to the inequality, we get

in notations of Proposition 4.4.1 that l(t, rv) < m′(ρm) = 1
2
, where the

inequality is strict because Gm(rm) > 0 by part (iv). Now 6.0.3 below

implies

Tγv =

∫ ∞
1

dt

l(t, rv)t
√
t2 − 1

>

∫ ∞
1

2dt

t
√
t2 − 1

= π.

(v) Since Rm is positive and finite, and Mm is von Mangoldt, there
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are geodesics tangent to parallels whose turn angles are ≤ π , and > π ,

respectively. By Proposition 4.4.1 the turn angle is monotone with respect

to r , so let rq be the (finite) supremum of all x such that
∫∞
x
Fm(x) < π .

Since Cm is closed, q ∈ Cm so that Tγq ≤ π . In fact, Tγq = π , for if

Tγq < π , then rq is not maximal because by Theorems 5.2.2 and 4.3.29

the set of points q with Tγq < π is open in Mm . If Gm(rq) > 0, then

by monotonicity rq is a unique solution of Tγq = π . If Gm(rq) = 0, then

Gm|[rq ,∞) = 0 as Mm is von Mangoldt, so 6.0.3 implies that the turn angle

of each γv with rv ≥ rq equals π
2m′(rq)

. So m′(rq) = 1
2

but this case cannot

happen as Rm is infinite by (iii).

Example 5.1.2. Let Mm be a paraboloid in R3 . Since m′(∞) = 0, i.e.

c(Mm) = 2π , we have Cm = {o} .

5.2 Critical Points of Infinity and Poles

Theorem 5.1.1 should be compared with the following results of Tanaka:

• the set of poles in any Mm is a closed metric ball centered at o of

some radius Rp in [0,∞] [Tan92b, Lemma 1.1].

• Rp > 0 if and only if
∫∞

1
m−2 is finite and lim inf

r→∞
m(r) > 0 [Tan92a].

• if Mm is von Mangoldt, then Rp is a unique solution of an explicit

integral equation [Tan92a, Theorem 2.1].

It is natural to wonder when the set of poles equals Cm , and we answer

the question when Mm is von Mangoldt:

Theorem 5.2.1. If Mm is a von Mangoldt plane, then
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(a) If Rp is finite and positive, then the set of poles is a proper subset

of the component of Cm that contains o.

(b) Rp = 0 if and only if Cm = {o}.

In preparing for the proof of Theorem 5.2.1 we prove Theorem 5.2.2.

First, we say that a ray γ in Mm points away from infinity if γ and the

segment [γ(0), o ] make an angle < π
2

at γ(0). Define Am ⊂Mm – {o} as

follows: q ∈ Am if and only if there is a ray that starts at q and points

away from infinity; by symmetry, Am ⊂ Cm .

Theorem 5.2.2. If Mm is a von Mangoldt plane, then Am is open in

Mm .

Proof. By Theorem 4.3.29 we know that q ∈ Am if and only if Tγq < π ,

and by Lemma 4.3.19 the map u → Tγu is continuous at q , so the set

{u ∈Mm |Tγu < π} is open, and hence so is Am .

Another proof. Fix q ∈ Am so that Tγq < π by Theorem 4.3.29. Fix ε > 0

such that ε+ Tγq < π . Let Pq be the parallel through q . Then there is a

ray γ with γ(0) = q and κγ(0) >
π
2

such that γ intersects Pq at points q ,

γ(t), and the turn angle of γ|(0,t) is < ε .

For an arbitrary sequence qi → q we need to show that qi ∈ Am for

all large i . Let γi : [0,∞) → Mm be the geodesic with γi(0) = qi and

κγi(0) = κγ(0) . Since γi converge to γ on compact sets, for large i there are

ti > 0 such that γi(ti) ∈ Pq and ti → t . The angle formed by γ and µγ(t)

is < π
2

. Rotational symmetry and Lemma 4.3.9 imply that if i is large,

then γi|[ti,∞) is a ray whose turn angle is ≤ Tγq . The turn angles of γi|(0,ti)
converge to the turn angle of γ|(0,t) , which is < ε . Thus Tγi < Tγq +ε < π

for large i , so that γi is a ray by Lemma 4.3.8, and hence qi ∈ Am .
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Proof of Theorem 5.2.1. (a) Let Pm denote the set of poles; it is a closed

metric ball [Tan92b, Lemma 1.1]. Moreover, Pm clearly lies in the con-

nected component Aom of Am ∪ {o} that contains o , and hence in the

component of Cm that contains o . By Theorem 5.2.2 Am is open in Mm ,

so Am ∪ {o} is locally path-connected, and hence Aom is open in Mm . If

Pm were equal to Aom , the latter would be closed, implying Aom = Mm ,

which is impossible as the ball has finite radius.

(b) The “if” direction is trivial as Pm ⊂ Cm . Conversely, if Cm 6= {o} ,
then by Lemma 4.3.13 m−2 is integrable and lim inf

r→∞
m(r) > 0, so Rp >

0 [Tan92a].

Remark 5.2.3. Of course Rp = ∞ implies Cm = Mm , but the con-

verse is not true: Theorem 7.2.1 ensures the existence of a von Mangoldt

plane with m′(∞) = 1
2

and Gm ≥ 0, and for this plane Cm = Mm by

Theorem 5.1.1, while Rp is finite by Remark 6.0.5.

5.3 Critical Points of Infinity in a von Man-

goldt Plane with Negative Curvature

Recall that by definition, if Mm is von Mangoldt, then G′ ≤ 0. Hence, if

G(r) < 0 at some r0 , then G < 0 on [r0,∞). The theorem below collects

most of what we know about Cm in this case.

Theorem 5.3.1. If Mm is a von Mangoldt plane with a point where Gm <

0 and such that lim inf
r→∞

m(r) > 0, then

(1) Mm contains a line and has total curvature −∞;

(2) if m′ has a zero, then neither Am nor Cm is connected;

(3) Mm –Am is a bounded subset of Mm ;
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(4) the ball of poles of Mm has positive radius.

Proof. By assumption there is a point of negative curvature, and since

the curvature is non-increasing, outside a compact subset the curvature

is bounded above by a negative constant. As lim infr→∞m(r) > 0, m is

bounded below by a positive constant outside any neighborhood of 0, so∫∞
0
m =∞ . Hence the total curvature 2π

∫∞
0
Gm(r)m(r) dr is −∞ .

Hence there exists a metric ball B of finite positive radius centered at

o such that the total curvature of B is negative, and such that no point

with G ≥ 0 lies outside B . By [SST03, Theorem 6.1.1, page 190], for any

q ∈Mm the total curvature of the set obtained from Mm by removing all

rays that start at q is in [0, 2π] . So for any q there is a ray that starts at

q and intersects B .

If q is not in B , then the ray points away from infinity, so q ∈ Am and

any point on this ray is in Cm . Thus Mm –Am lies in B . Since Cm 6= {o} ,
Theorem 5.2.1 implies that Rp > 0. Letting q run to infinity, the rays

subconverge to a line that intersects B (see e.g. [SST03, Lemma 6.1.1,

page 187].

If m′(rq) = 0, then the parallel through q is a geodesic but not a ray,

so Lemma 4.3.10 implies that no point on the parallel through q is in

Cm . Since Cm contains o and all points outside a compact set, Cm is not

connected; the same argument proves that Am is not connected.

Example 5.3.2. Here we modify [Tan92b, Example 4] to construct a

von Mangoldt plane Mm such that m′ has a zero and neither Am nor Cm

is connected. Given a ∈ (π
2
, π) let m0(r) = sin r for r ∈ [0, a] , and define

m0 for r ≥ a so that m0 is smooth, positive, and lim infr→∞m0 > 0.

Thus K0 := −m′′0
m0

equals 1 on [0, a] . Let K be any smooth nonincreasing

function with K ≤ K0 and K|[0,a] = 1. Let m be the solution of 7.1.7;
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note that m(r) = sin(r) for r ∈ [0, a] so that m′ vanishes at π
2

. By Sturm

comparison m ≥ m0 > 0, and hence Mm is a von Mangoldt plane. Since

m′(a) < 0 and m > 0 for all r > 0, the function m cannot be concave,

so K = Gm eventually becomes negative, and Theorem 5.3.1 implies that

Am and Cm are not connected.

Example 5.3.3. Here we construct a von Mangoldt plane such that m′ >

0 everywhere but Am and Cm are not connected. Let Mn be a von

Mangoldt plane such that Gn ≥ 0 and n′ > 0 everywhere, and Rn is

finite (where Rn is the radius of the ball Cn ). This happens e.g. for any

paraboloid, any two-sheeted hyperboloid with n′(∞) < 1
2
, or any plane

constructed in Theorem 7.2.1 with n′(∞) < 1
2
. Fix q /∈ Cn . Then γq has

turn angle > π , so there is R > rq such that
∫ R
rq
Fn(rq) > π . Let G be any

smooth non-increasing function such that G = Gn on [0, R] and G(z) < 0

for some z > R . Let m be the solution of (7.1.7) with K = G . By Sturm

comparison m ≥ n > 0 and m′ ≥ n′ > 0 everywhere; see Remark 7.1.10.

Since m = n on [0, R] , on this interval we have Fm(rq) = Fn(rq) , so in

the von Mangoldt plane Mm the geodesic γq has turn angle > π , which

implies that no point on the parallel through q is in Cm . Now parts (3)-(4)

of Theorem 5.3.1 imply that Am and Cm are not connected.

5.4 Creating Annuli Free of Critical Points

of Infinity

Remark 5.4.1. It is natural for one to be interested in subintervals of

(0,∞) that are disjoint from r(Cm), as e.g. happens for any interval on

which m′ ≤ 0, or for the interval (Rm,∞) in Theorem 5.1.1. To this end

we prove Theorem 5.4.3. Theorem 5.4.2 is needed for us to prove Theorem

5.4.3.
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Theorem 5.4.2. Let Mm be a von Mangoldt plane such that m′|[0,y] >

0 and m′|[x,y] <
1
2

. Set fm,x(y) := m−1 (cos(πb)m(y)), where b is the

maximum of m′ on [x, y]. If x ≤ fm,x(y), then r(Cm) and [x, fm,x(y)]

are disjoint.

Proof. Set f := fm,x . Arguing by contradiction assume there exists q ∈
Cm with rq ∈ [x, f(y)]. Then γq has turn angle ≤ π , so if c := m(rq),

then

π ≥
∫ ∞
rq

c dr

m
√
m2 − c2

>

∫ y

rq

c dr

m
√
m2 − c2

=

∫ m(y)

c

c dm

m′(r)m
√
m2 − c2

≥

∫ m(y)

c

c dm

bm
√
m2 − c2

=
1

b
arccos

(
c

m(y)

)
so that πb > arccos

(
c

m(y)

)
, which is equivalent to cos(πb)m(y) < m(rq).

On the other hand, m(f(y)) is in the interval [0,m(y)] on which m−1

is increasing, so f(y) < y , and therefore m is increasing on [x, f(y)].

Hence rq < f(y) implies m(rq) < m(f(y)) = cos(πb)m(y), which is a

contradiction.

Theorem 5.4.3. Let Mn be a von Mangoldt plane with Gn ≥ 0, n(∞) =

∞, and such that n′(x) < 1
2

for some x. Then for any z > x there exists

y > z such that if Mm is a von Mangoldt plane with n = m on [0, y],

then r(Cm) and [x, z] are disjoint.

Proof. We use the notation in Theorem 5.4.2. The assumptions on n

imply n′ > 0, n′|[x,∞) <
1
2
, and b = n′(x). Hence fn,x(∞) = ∞ . In

particular, if y is large enough, then fn,x(y) > z > x ; fix y that satisfies

the inequality. Now if Mm is any von Mangoldt plane with m = n on

[0, y] , then fm,x(y) = fn,x(y), so Mm satisfies the assumptions of Theorem

5.4.2, so [x, z] and r(Cm) are disjoint.
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Remark 5.4.4. In general, if Mm , Mn are von Mangoldt planes with

n = m on [0, y] , then the sets Cm , Cn could be quite different. For

instance, if Mn is a paraboloid, then Cn = {o} , but by Example 5.3.3 for

any y > 0 there is a von Mangoldt Mm with some negative curvature such

that m = n on [0, y] , and by Theorem 5.3.1 the set Mm –Cm is bounded

and Cm contains the ball of poles of positive radius.
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Chapter 6

Souls in a Rotationally

Symmetric Plane

Recall that the soul construction takes as input a basepoint in an open

complete manifold N of nonnegative sectional curvature and produces a

compact totally convex submanifold S without boundary, called a soul,

such that N is diffeomorphic to the normal bundle to S . Thus if N is

contractible, as happens for Mm , then S is a point. The soul construction

also gives a continuous family of compact totally convex subsets that starts

with S and ends with N , and according to [Men97, Proposition 3.7] q ∈ N
is a critical point of infinity if and only if there is a soul construction

such that the associated continuous family of totally convex sets drops in

dimension at q . In particular, any point of S is a critical point of infinity,

which can also be seen directly; see the proof of [Mae75, Lemma 1]. In

Theorem 6.0.1 we prove conversely that every point of Cm is a soul; for

this Mm need not be von Mangoldt.

Theorem 6.0.1. If Mm is a plane of nonnegative curvature, then the set

of souls is equal to the set of critical points of infinity.

As we shall see below, in the case of Mm with G ≥ 0, the soul con-

struction with basepoint q ∈ Cm \{o} takes no more than two steps; more
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precisely, deleting the horoballs for rays emanating from q results either

in {q} or in a segment with q as an endpoint. In the latter case the soul is

the midpoint of the segment. In what follows, we let Bσ denote the (open)

horoball for a ray σ with σ(0) = q , i.e. the union over t ∈ [0,∞) of the

metric balls of radius t centered at σ(t). Let Hσ denote the complement

of Bσ in the ambient Riemannian manifold.

We start with a lemma:

Lemma 6.0.2. Let σ be a ray in a complete Riemannian manifold M ,

and let q = σ(0). Then for any nonzero v ∈ TqM that makes an acute

angle with σ , the point expq(tv) lies in the horoball Bσ for all small t > 0.

Proof of Theorem 6.0.1. This follows from the definition of a horoball,

for if Υ denotes the image of t → expq(tv), then lims→+0
d(σ(s),Υ
d(σ(s),q)

=

sin](v′(0), σ′(0)) < 1, so Bσ contains a subsegment of Υ − {q} that

approaches q .

For q ∈ Cm , let Cq denote the complement in Mm of the union of the

horoballs for rays that start at q ; note that Cq is compact and totally

convex. If Cq equals {q} , then q is a soul. Otherwise, Cq has positive

dimension and q ∈ ∂Cq . Set γ := ξq ; thus γ is a ray.

Case 1. Suppose π/2 < k̂(rq) < π . Let γ̄ be the clockwise ray that is

mapped to γ by the isometry fixing the meridian through q . travels in

the clockwise direction.) We next show that q is the intersection of the

complements of the horoballs for rays µq , γ , γ̄ , implying that q is a soul

for the soul construction that starts at q . As k̂(rq) > π/2, any nonzero

v ∈ TqMm forms angle < π/2 with one of µ′(0), γ′(0), γ̄′(0). So expq(tv)

must lie in one of the three horoballs above and hence expq(tv) cannot lie

in the intersection of Hµq , Hγ , Hγ̄ for small t . Since the intersection is

totally convex, it is {q} . (Recall that a subset C ⊂M is totally convex if
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any geodesic of M connecting two points in C lies entirely in C . Hence if

we cannot have a nontrivial geodesic emanating from q and staying inside

Cq , Cq must be q ; that is, q must be a soul.)

Case 2. Suppose k̂(rq) = π
2

, so that γ = γq , and suppose Gm does not

vanish along γ . By symmetry and Lemma 6.0.2 it suffices to show that

every point of the segment [o, q) near q lies in Bγ . Let α be the ray from

o passing through q . The geodesic γ is orthogonal to α , and it suffices

to show that there is a focal point w of α along γ (for this would imply

that there is a family of curves near γ along which the distance from α to

any point u on γ beyond w is shorter than the distance to u along γ ).

[Sak96], Lemma III.2.11).

Any α-Jacobi field along γ is of the form jn where n is a parallel

nonzero normal vector field along γ and j solves j′′(t) +G(rγ(t))j(t) = 0,

j(0) = 1, j′(0) = 0. Since G ≥ 0, the function j is concave, so due to

its initial values, j must vanish unless it is constant. The point where j

vanishes is focal. If j is constant, then G = 0 along γ , which is ruled out

by assumption.

Case 3. Suppose k̂(rq) = π , so that γ = τq . For any vector v ∈ TqMm

pointing inside Cq , for small t the point expq(tv) is not in the horoballs for

µq and τq . Hence v is tangent to a parallel, and Cq must be a subsegment

of the geodesic α tangent to the parallel through q . As Cq lies outside

the horoballs for µq and τq , along these rays there cannot be focal points

of α , implying that Gm vanishes along µq and τq , and hence everywhere,

by rotational symmetry, so that Mm is the standard R2 , and q is a soul

(recalling that every point of R2 is a soul).

Case 4. Suppose κ̂(rq) = π
2

, so that γ = γq , and suppose that Gm

vanishes along γ . We show that q is a soul by showing that every point

in Mm is a soul. Our strategy is twofold: First we show that o must be
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in the horoball of γq . Using this fact, we then show that if we choose

basepoint q appropriately, any point in Mm can be rendered a soul.

By rotational symmetry Gm = 0 for r ≥ rq , so m(r) = ar + m(0) for

r ≥ rq where a > 0, as m only vanishes at 0. The turn angle of γ can be

computed explicitly as

∫ ∞
x

dr

m(r)
√

m(r)2

m(x)2
− 1

=

∫ ∞
1

dt

a t
√
t2 − 1

= −1

a
arccot(

√
t2 − 1)

∣∣∣∞
1

=
π

2a

(6.0.3)

where x := rq . Since γ is a ray, we deduce that a ≥ 1
2
, for if a < 1

2
, then

the turn angle of γ would be greater than π , implying that γ intersects

τq .

Let z ≤ x be the smallest number such that m′|[z,∞) = a ; thus there is

no neighborhood of z in (0,∞) on which Gm is identically zero.

Note that m(r) = a(r−z)+m(z) for r ≥ z , so the surface Mm –B(o, z)

is isometric to C –B(ō, m(rq)

a
) where C is the cone with apex ō such that

cutting C along the meridian from ō gives a sector in R2 of angle 2πa

with the portion inside the radius m(rq)

a
removed.

Since γq is a ray, Lemma 6.0.2 implies the existence of a neighborhood

Uq of q such that each point in Uq \ [o, q] lies in a horoball for a ray from

q .

We now check that o lies in the horoball of γq . Concavity of m implies

that the graph of m lies below its tangent line at z , so evaluating the tan-

gent line at r = 0 and using m(0) = 0 gives m(z)
a

> z . The Pythagorean

theorem in the sector in R2 of angle 2πa implies that

dMm(γq(s), o) =

√
s2 + (x− z +

m(z)

a
)2 + z − m(z)

a
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which is < s for large s , implying that o is in the horoball of γq .

In the second phase of our proof, we show that every point of Mm is a

soul. To realize q as a soul, we need to look at the soul construction with

arbitrary basepoint v , which starts by considering the complement in Mm

of the union of horoballs for all rays from v , which by the above is either v

or a segment [u, v] contained in (o, v] , where u is uniquely determined by

v . It will be convenient to allow for degenerate segments for which u = v ;

with this convention, the soul is the midpoint of [u, v] . Since z is the

smallest such that Gm|[z,∞) = 0, the focal point argument of Case 2 shows

that u = v when 0 < rv < z . Set y := rv , and let e(y) := ru ; note that

0 < e(y) ≤ y , and the midpoint of [u, v] has r -coordinate h(y) := y+e(y)
2

.

To realize each point of Mm as a soul, it suffices to show that each

positive number is in the image of h . Since h approaches zero as y →
0 and approaches infinity as y → ∞ , it is enough to show that h is

continuous and then apply the Intermediate Value theorem.

Since e(y) = y when 0 < y < z , we only need to verify continuity of e

when y ≥ z . Let vi be an arbitrary sequence of points on α converging to

v , where as before α is the ray from o passing through q . Set vi := rvi .

Arguing by contradiction suppose that e(yi) does not converge to e(y).

Since 0 < e(yi) ≤ yi and yi → y , we may pass to a subsequence such that

e(yi)→ e∞ ∈ [0, y] . Pick any w such that rw lies between e∞ and e(y).

Thus there exists i0 such that either e(yi) < rw < e(y) for all i > i0 , or

e(y) < rw < e(yi) for all i > i0 . As y ≥ z , we know that Gm vanishes

along γv , so every α-Jacobi field along γv is constant. Therefore, the

rays γvi converge uniformly to γv as vi → v , and hence their Busemann

functions bi , b converge pointwise. Thus bi(w)→ b(w), but we had chosen

w so that b(w), bi(w) are all nonzero, and sign(b(w)) = −sign(bi(w)),

which gives a contradiction.
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Remark 6.0.4. In Cases 1, 2, and 3 the soul construction terminates

in one step; namely, if q ∈ Cm , then {q} is the result of removing the

horoballs for all rays that start at q . We do not know whether the same

is true in Case 4 because the basepoint v needed to produce the soul q

is found implicitly via the Intermediate Value theorem, and it is unclear

how v depends on q and whether v = q .

Remark 6.0.5. Let Mm be as in Case 4 with m′|[z,∞) = 1
2
. If Mm is von

Mangoldt, then no point q with rq ≥ z is a pole because by 6.0.3 the turn

angle of γq is π , which by Theorem 4.3.29 cannot happen for a pole.
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Chapter 7

More on von Mangoldt Planes

In this chapter, we start with gathering some facts and observations on

von Mangoldt planes; the chapter culminates in Theorem 7.2.1, in which

we show that we can construct a von Mangoldt plane Mm that is a cone

near infinity and for which we can prescribe m′(r) to take on any value

in (0, 1].

7.1 Some Observations

It is often useful to visualize Mm as a surface of revolution in R3 , so

we recall the following lemma (note that Mm is not assume to be von

Mangoldt):

Lemma 7.1.1.

(1) Mm is isometric to a surface of revolution in R3 if and only if |m′| ≤
1.

(2) Mm is isometric to a surface of revolution (r cosφ, r sinφ, g(r)) in

R3 if and only if 0 < m′ ≤ 1.

Proof. (1) Consider a unit speed curve s → (x(s), 0, z(s)) in R3 where

x(s) ≥ 0 and s ≥ 0. Rotating the curve about the z -axis gives the surface
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of revolution

(x(s) cosφ, x(s) sinφ, z(s))

with metric ds2 +x(s)2dφ2 . The meridians starting at the origin are rays,

so for this metric to be equal to ds2+m(s)2dφ2 we must have m(s) = x(s).

Since the curve has unit speed, |x′(s)| ≤ 1, so a necessary condition for

writing the metric as a surface of revolution is |m′(s)| ≤ 1. It is also

sufficient for if |m′(s)| ≤ 1, then we could let z(s) :=
∫ s

0

√
1− (m′(s))2ds ,

so that now (m(s), z(s)) has unit speed.

(2) If furthermore m′ > 0 for all s , then the inverse function of m(s)

makes sense, and we can write the surface of revolution (m(s) cosφ, m(s) sinφ, z(s))

as (x cosφ, x sinφ, g(x)) where x := m(s) and g(x) := z(m−1(x)). Con-

versely, given the surface (x cosφ, x sinφ, g(x)), the orientation-preserving

arclength parametrization x = x(s) of the curve (x, 0, g(x)) satisfies

x′ > 0.

Example 7.1.2. The standard R2 is the only von Mangoldt plane with

Gm ≤ 0 that can be embedded into R3 as a surface or revolution because

m′(0) = 1 and m′ is non-decreasing afterwards.

Remark 7.1.3. Let Mm , not necessarily von Mangoldt, have Gm ≥ 0.

Then m′ ∈ [0, 1] because m > 0, m′ is non-increasing, and m′(0) = 1,

so that Mm is isometric to a surface of revolution in R3 . In fact, if

m′(s0) = 0, then m|[s0,∞) = m(s0), i.e. outside the s0 -ball about the ori-

gin Mm is a cylinder. Thus except for such surfaces Mm can be written

as (x cosφ, x sinφ, g(x)) for g(x) =
∫ m−1(x)

0

√
1− (m′(s))2ds . Paraboloids

and two-sheeted hyperboloids are von Mangoldt planes of positive curva-

ture [SST03, pp. 234-235] and they are of the form (x cosφ, x sinφ, g(x)).

Remark 7.1.4. The defining property G′m ≤ 0 of von Mangoldt planes

clearly restricts the behavior of m′ . Let Z(Gm) denote the set where Gm
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vanishes; as Mm is von Mangoldt, Z(Gm) is closed and connected, and

hence it could be equal to the empty set, a point, or an interval, while m′

behaves as follows.

(i) If Gm > 0, then m′ is decreasing and takes values in (0, 1].

(ii) If Gm ≤ 0, then m′ is non-decreasing and takes values in [1,∞).

(iii) If Z(Gm) is a positive number z , then m′ decreases on [0, z) and

increases on (z,∞), and m′ may have two, one, or no zeros.

(iv) If Z(Gm) = [a, b] ⊂ (0,∞] , then m′ decreases on [0, a), is constant

on [a, b] , and increases on (b,∞) if b < ∞ . Also either m′|[a,b] = 0

or else m′ has two, or no zeros.

All the above possibilities occur with one possible exception: in cases

(iii)-(iv) we are not aware of examples where m′ vanishes on Z(Gm).

Remark 7.1.5. Thus if Mm is von Mangoldt, then m′ is monotone near

infinity, so m′(∞) exists; moreover, m′(∞) ∈ [0,∞] , for otherwise m

would vanish on (0,∞). It follows that Mm admits total curvature, which

equals∫ 2π

0

∫ ∞
0

Gmmdr dθ = −2π

∫ ∞
0

m′′ = 2π(1−m′(∞)) ∈ [−∞, 2π].

Remark 7.1.6. The zeros of m′ correspond to parallels that are geodesics

and are of interest. In contrast with restrictions on the zero set of m′ for

von Mangoldt planes, if Mm is not necessarily von Mangoldt, then any

closed subset of [0,∞) that does not contain 0 can be realized as the set

of zeros of m′ . (Indeed, for any closed subset of a manifold there is a

smooth nonnegative function that vanishes precisely on the subset [BJ82,

Whitney’s Theorem 14.1]. It follows that if C is a closed subset of [0,∞)
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that does not contain 0, then there is a smooth function g : [0,∞) →
[0,∞) that is even at 0, satisfies g(0) = 1, and is such that g(s) = 0 if

and only if s ∈ C . If m is the solution of m′ = g , m(0) = 0; then Mm

has the promised property).

A common way of constructing von Mangoldt planes involves the Jacobi

initial value problem

m′′ +Km = 0, m(0) = 0, m′(0) = 1 (7.1.7)

where K is smooth on [0,∞). It follows from the proof of [KW74, Lemma

4.4] that gm is a complete smooth Riemannian metric on R2 if and only

if the following condition holds

(?) the (unique) solution m of (7.1.7) is positive on (0,∞).

Remark 7.1.8. A basic tool that produces solutions of (7.1.7) satisfying

condition (?) is the Sturm comparison theorem that implies that if m1

is a positive function that solves (7.1.7) with K = K1 , and if K2 is any

non-increasing smooth function with K2 ≤ K1 , then the solution m2 of

(7.1.7) with K = K2 satisfies m2 ≥ m1 , so that gm2 is a von Mangoldt

plane.

Example 7.1.9. If K is a smooth function on [0,∞) such that max(K, 0)

has compact support, then a positive multiple of K can be realized as the

curvature Gm of some Mm ; of course, if K is non-increasing, then Mm

is von Mangoldt. (Indeed, in [KW74, Lemma 4.3] Sturm comparison was

used to show that if
∫∞
t

max(K, 0) ≤ 1
4t+4

for all t ≥ 0, then K satisfies

(?), and in particular, if max(K, 0) has compact support, then there is a

constant ε > 0 such that the above inequality holds for εK ).
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Remark 7.1.10. A useful addendum to Remark 7.1.8 is that the addi-

tional assumption m′1 ≥ 0 implies m′2 ≥ m′1 > 0. (Indeed, the function

m′1m2 − m1m
′
2 vanishes at 0 and has nonpositive derivative (−K1 +

K2)m1m2 , so m′1m2 ≤ m1m
′
2 . As m1 , m2 , m′1 are nonnegative, so is

m′2 . Hence, m1m
′
2 ≤ m2m

′
2 , which gives m′1m2 ≤ m2m

′
2 , and the claim

follows by canceling m2 ).

7.2 Smoothed cones made von Mangoldt

Finding a von Mangoldt plane that has zero curvature (and therefore

constant m′ ) near infinity is easy, but it is harder to prescribe the value

of m′ there. Theorem 7.2.1 below presents what we understand on this

issue.

Theorem 7.2.1. For every s ∈ (0, 1], there exists ρ > 0 and a von

Mangoldt plane Mm such that m′ = s on [ρ,∞).

Thus, each cone in R3 can be smoothed to a von Mangoldt plane, but

we do not know how to construct a (smooth) capped cylinder that is von

Mangoldt.

Proof. We exclude the trivial case x = 1 in which m(r) = r works.

For u ∈ [0, 1
4
] set Ku(r) = 1

4(r+1)2
−u , and let mu be the unique solution

of (7.1.7) with K = Ku . Then gmu is von Mangoldt. For u > 0 let

zu ∈ [0,∞) be the unique zero of Ku ; note that zu is the global minimum

of m′u , and zu →∞ as u→ 0.

Lemma 7.2.2. The function u → m′u(zu) takes every value in (0, 1) as

u varies in (0, 1
4
).
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Proof. One verifies that m0(r) = ln(r+1)
√
r + 1, i.e. the right hand side

solves (7.1.7) with K = K0 . Then m′0 = 2+ln(r+1)

2
√
r+1

is a positive function

converging to zero as r → ∞ . By Sturm comparison mu ≥ m0 > 0 and

m′u ≥ m′0 > 0.

We now show that m′u(zu)→ 0 as u→ +0. To this end fix an arbitrary

ε > 0. Fix tε such that m′0(tε) < ε . By continuous dependence on

parameters (mu,m
′
u) converges to (m0,m

′
0) uniformly on compact sets as

u→ 0. So for all small u we have m′u(tε) < ε and also tε < zu . Since mu

decreases on (0, zu), we conclude that 0 < m′u(zu) < m′u(tε) < ε , proving

that m′u(zu)→ 0 as u→ +0.

On the other hand, m′1
4

(z 1
4
) = 1 because z 1

4
= 0 and by the initial

condition m′1
4

(0) = 1. Finally, the assertion of the lemma follows from

continuity of the map u → m′u(zu), because then it takes every value

within (0, 1) as u varies in (0, 1
4
). (To check continuity of the map fix u∗ ,

take an arbitrary u→ u∗ and note that zu → zu∗ , so since m′u converges

to m′u∗ on compact subsets, it does so on a neighborhood of zu∗ , so m′u(zu)

converges to m′u∗(zu∗)).

Continuing the proof of the theorem, fix an arbitrary u > 0. The contin-

uous function max(Ku, 0) is decreasing and smooth on [0, zu] and equal

to zero on [zu,∞). So there is a family of non-increasing smooth functions

Gu,ε depending on small parameter ε such that Gu,ε = max(Ku, 0) out-

side the ε-neighborhood of zu . Let mu,ε be the unique solution of (7.1.7)

with K = Gu,ε ; thus m′u,ε(r) = m′u,ε(zu + ε) for all r ≥ zu + ε . If ε is

small enough, then Gu,ε ≤ K0 , so mu,ε ≥ m0 > 0 and m′u,ε ≥ m′0 > 0.

By continuous dependence on parameters, the function (u, ε) → m′u,ε is

continuous, and moreover m′u,ε(zu+ε)→ m′u(zu) as ε→ 0, and u is fixed.

Fix x ∈ (0, 1). By Lemma 7.2.2 there are positive v1 , v2 such that

m′v1(zv1) < x < m′v2(zv2). Letting u of the previous paragraph to be v1 ,
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v2 , we find ε such that m′v1,ε(zv1 + ε) < x < m′v2,ε(zv2 + ε), so by the

intermediate value theorem there is u with m′u,ε(zu + ε) = x . Then the

metric gmu,ε has the asserted properties for ρ = zu + ε .



79

Chapter 8

Extending the Work of Kondo

and Tanaka

In [KT10] Kondo-Tanaka generalize the Toponogov Comparison Theo-

rem so that an arbitrary noncompact manifold M can be compared with a

rotationally symmetric plane Mm (defined by the metric dr2 +m2(r)dθ2 ),

and they use this to show that if Mm satisfies certain conditions, then

M must be topologically finite. We substitute one of the conditions for

Mm with a weaker condition and show that our method using this weaker

condition enables us to draw further conclusions on the topology of M .

We also completely remove one of the conditions required for the Sector

Theorem, another important result by Kondo-Tanaka.

8.1 Basics

Definition 8.1.1. A manifold M is topologically finite if it is homeomor-

phic to the interior of a compact set with boundary.

Definition 8.1.2. Let (M, p) denote a manifold with arbitrary basepoint

p ∈ M , let Mm denote a rotationally symmetric plane with origin o , let

G be the curvature function for M , and for any meridian µ(t) emanating



80

from o = µ(0), let Gm(µ(t)) be the curvature at µ(t). We say that

(M, p) has radial curvature bounded below by that of Mm if, along every

unit-speed minimal geodesic γ : [0, a)→M emanating from p = γ(0), we

have G(σt) ≥ Gm(µ(t)) for all t ∈ [0, a) and all 2-dimensional subspaces

σt spanned by γ′(t) and an element of Tγ(t)M .

Definition 8.1.3. Given (M, p), a point q ∈M is a critical point of d(·, p)
if, given any v ∈ TqM , there exists a minimal geodesic γ emanating from

q to p such that ](γ̇(0), v) ≤ π
2

.

Definition 8.1.4. We say that Mm is a Cartan-Hadamard plane if

Gm ≤ 0 everywhere.

The critical point theory of distance functions by Grove-Shiohama [GrSh],

[Gro93], [Gre97, Lemma 3.1], [Pet06, Section 11.1] implies the following

Isotopy Lemma [Pet06, Section 11.1]:

Theorem 8.1.5. (Isotopy Lemma) Given (M, p), suppose that for R1, R2

with 0 < R1 < R2 ≤ ∞, BR2(p) \ BR1(p) has no critical point of d(·, p).

Then BR2(p) \BR1(p) is homeomorphic to ∂BR1(p)× [R1, R2].

Remark 8.1.6. Theorem 8.1.5 implies that M is topologically finite if

the set of critical points of d(·, p) is confined to a subset of finite radius.

Definition 8.1.7. Given a rotationally symmetric plane Mm , we define

a sector of angular measure δ , V (δ), as

V (δ) := {q ∈Mm|0 < θ(q) < δ}

Likewise we define a closed sector of angular measure δ , V (δ), as

V (δ) := {q ∈Mm|0 ≤ θ(q) ≤ δ}
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Definition 8.1.8. When we say that a sector V (δ) or V (δ) is free of

cut points or is cut-point-free, we mean that there does not exist a pair of

points q, q′ in the sector such that if γ is a minimal geodesic joining q to

q′ , q′ is a cut point of q . For example, if Mm is von Mangoldt, V (π) is

free of cut points.

8.2 The Generalized Toponogov Compari-

son Theorem

Remark 8.2.1. The main result in [KT10], which we improve on, is

founded on a generalized version of the Toponogov Comparison Theo-

rem (Theorem 8.2.2). We present here a brief history leading up to this

generalized version.

Let Mk denote a 2-dimensional manifold with curvature ≥ k and Sk the

comparison space with constant curvature k . Also let 4(Mk) denote a

triangle in Mk and 4(Sk) a comparison triangle of Sk with corresponding

sides of the same length. In 1955, A. D. Alexandrov [Al] proved that

in this setting, the angles of 4(Mk) are greater than or equal to the

corresponding angles of 4(Sk). In 1959, V. A. Toponogov [To1], [To2]

improved on Alexandrov’s results so that Mk can have any dimension ≥ 2;

this work is the widely known Toponogov Comparison Theorem. In 1980,

D. Elerath [Ele80] proved the above inequality for a triangle in Mk with

k ≥ 0 and a comparison triangle in a von Mangoldt plane embedded in

R3 . In 1985, U. Abresch [A] developed a way of using a Cartan-Hadamard

plane as a comparison space. In 2003, Y. Itokawa, Y. Machigashira, and

K. Shiohama [IMS03] improved on Elerath’s results so that the comparison

von Mangoldt plane does not have to be embeddable in R3 and so that

the angle inequality applies to all three pairs of corresponding angles (in
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Elerath’s work the inequality applies to only two of the pairs). Finally,

in 2010, K. Kondo and M. Tanaka [KT10] generalized the Toponogov

Comparison Theorem in the following way:

Theorem 8.2.2. Let the radial curvature of (M, p) be bounded below by

that of Mm . Assume that Mm admits a sector V (δ) for some δ ∈ (0, π)

that has no pair of cut points. Then, for every geodesic triangle 4(pxy)

in M with ](xpy) < δ , there exists a geodesic triangle 4(p̃x̃ỹ) in V (δ)

such that

d(p̃, x̃) = d(p, x), d(p̃, ỹ) = d(p, y), d(x̃, ỹ) = d(x, y)

and that

](xpy) ≥ ](x̃p̃ỹ), ](pxy) ≥ ](p̃x̃ỹ), ](pyx) ≥ ](p̃ỹx̃).

Remark 8.2.3. In the original Toponogov Comparison Theorem, the re-

quirement of curvature bounding from below is the same, but no basepoint

is needed because constant curvature spaces are homogeneous.

Remark 8.2.4. The lemma below is key to proving the Generalized To-

ponogov Theorem in [KT10]. We state it in full because we also use it to

prove one of our results.

Lemma 8.2.5. ([Lemma 4.11, [KT10]) Let the radial curvature of (M, p)

be bounded below by that of Mm . Assume that Mm admits a sector V (δ)

for some δ ∈ (0, π) that has no pair of cut points. If a geodesic triangle

4pxy in Mm admits a geodesic triangle 4p̃x̃ỹ in V (δ) satisfying

d(p̃, x̃) = d(p, x), d(p̃, ỹ) = d(p, y), d(x̃, ỹ) = d(x, y),

then

](pxy) ≥ ](p̃x̃ỹ) and ](pyx) ≥ ](p̃ỹx̃).
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8.3 The Two Theorems

Below are the two results in [KT10] that we extend.

Theorem 8.3.1. (Main Theorem) Let M be a complete open Riemannian

n-manifold whose radial curvature at the basepoint p is bounded below by

that of a noncompact rotationally symmetric plane Mm . Assume that

there exists a sector V (δ) in Mm that does not contain a pair of cut

points. Also suppose Mm has finite total curvature. Then M has finite

topological type.

Remark 8.3.2. Since the main theorem calls for a rotationally symmetric

plane with a cut-point-free sector, it is natural to wonder what surfaces

satisfy this criterion. The Sector Theorem gives two such classes of planes.

Theorem 8.3.3. (Sector Theorem) Let Mm be a noncompact rotationally

symmetric plane that is von Mangoldt or Cartan-Hadamard outside a ball

of finite radius about o. If Mm admits finite total curvature, then there

exists δ ∈ (0, π) such that V (δ) has no pair of cut points.

8.4 Extending the Main Theorem

We modify Theorem 8.3.1 by replacing the condition of finite curvature

with the condition that m′(r) be bounded. Note that bounded m′(r) is

more general than c(Mm) > −∞ . Indeed, if Mm admits total curvature,

then we have

c(Mm) =

∫ 2π

0

∫ ∞
0

Gm(r)m(r)drdθ = −2π

∫ ∞
0

m′′ = 2π(1−m′(∞)) ∈ [−∞, 2π]

So, c(Mm) > −∞ implies m′(∞) ∈ [0,∞). Hence, m′(r) must be

bounded on all r .
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On the other hand, there exists a rotationally symmetric plane such that

total curvature is not admitted but m′(r) is bounded on all r : define m(r)

as m(r) = r on [0, 2π] and m(r) = r − 1
2

sin r on (2π,∞). Next, smooth

out m(r) on a neighborhood σ of 2π such that m(r) > 0 on σ . Then

m(r) is a smooth function on [0,∞) that can be extended to a smooth

odd function around 0 with m(r) > 0 for all r , m(0) = 0, and m′(0) = 1.

Hence the metric dr2+m2(r)dθ2 describes a rotationally symmetric plane.

Since m′(r) = 1 − 1
2

cos r does not converge to a limit as r → ∞ , Mm

does not admit total curvature. However, m′(r) = 1− 1
2

cos r is bounded

on all r .

Convention: From this point on, set N := sup{m′(r)} .

Remark 8.4.1. Since m′(0) = 1 for any Mm , we have N ≥ 1 always.

Also, note that Mm is isometric to R2 if and only if m′(r) is identically

1.

Lemma 8.4.2. Let Mm be a rotationally symmetric plane with metric

dr2 +m2(r)dθ2 , and let N <∞. Then γq : [0,∞)→ Mm has turn angle

≥ π
2N

. Furthermore, if Mm is not isometric to R2 , then γq : [0,∞)→Mm

has turn angle > π
2N

.

Proof. If γq is not an escaping geodesic, then it must have infinite turn

angle by Lemma 4.3.3. So assume γq is escaping. Let c be the Clairaut

constant of γq , and let ρ be the value at which Nρ = c = m(rq). Since

N ≥ m′(r) for all r , we have∫ r

0

Ndr = Nr ≥ m(r) =

∫ r

0

m′(r)dr

for any r .
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This implies

Tγq =

∫ ∞
rq

cdr

m(r)
√
m2(r)− c2

≥
∫ ∞
ρ

cdr

Nr
√

(Nr)2 − c2
.

Now we show that the second integral equals π
2N

. Applying the change

of variables r := ct
N

, we have∫ ∞
1

c c
N
dt

ct
√

(ct)2 − c2
=

∫ ∞
1

dt

N t
√
t2 − 1

= − 1

N
arccot(

√
t2 − 1)|∞1 =

π

2N
.

It follows trivially that if Mm is not isometric to R2 , then N > 1 and

m′ < N for some r , so Tγq >
π

2N
.

Lemma 8.4.3. Let Mm be such that there exists a sector V (δ) free of cut

points and N <∞. If σ is a ray with κσ ≥ π
2

, then Tσ ≥ min( π
2N
, δ). If,

furthermore, Mm is not isometric to R2 and if δ > π
2N

, then Tσ >
π

2N
.

Proof. If γq is not escaping, then it has infinite turn angle by Lemma 4.3.3.

If γq is escaping, then Tγq ≥ π
2N

by Lemma 8.4.2. Choose ε < min( π
2N
, δ)

and assume q ∈ ∂V (ε). Now γq and V (ε) determine a bounded region.

For small t > 0, because κσ ≥ π
2

, σ(t) lies in this region. In order for σ

to escape this region, either Tσ > ε or it must intersect γq within V (ε).

But the latter is impossible, so Tσ > ε . Since ε was arbitrary, we have

Tσ ≥ min( π
2N
, δ).

Suppose Mm is not isometric to R2 and δ > π
2N

. Even if γq is escaping,

Tγq >
π

2N
by Lemma 8.4.2. Hence, γq and V ( π

2N
) determine a bounded

region, and for small t > 0, because κσ ≥ π
2

, σ(t) lies in this region. In

order for σ to escape this region, either Tσ >
π

2N
or it must intersect γq

within V ( π
2N

). But the latter is impossible.
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Lemma 8.4.4. Let the radial curvature of (M, p) be bounded below by that

of Mm with a cut-point-free sector V (δ), let q be a critical point of d(·, p),

and let γ : [0,∞) → M be a ray emanating from p. Let α be a minimal

geodesic connecting p = α(0) to q such that ](γ̇(0), α̇(0)) =: θ < δ . Then

there exists a ray η̃ ⊂Mm with Tη̃ ≤ θ and κη̃ ≥ π
2

.

Proof. If q is a critical point of d(·, p), then we can always construct a

triangle ⊂ M with q a vertex and one of the sides ⊂ γ , since γ cannot

pass through q ; indeed, if it did, then γ|[0,d(p,q)] would be the only minimal

geodesic joining q to p , which is impossible since q is a critical point of

d(·, p).

Let ηj be a minimal geodesic joining q to γ(tj), where tj → ∞ as

j → ∞ . Consider the sequence of triangles 4(pqγ(tj)), consisting of

edges α , ηj , and γ|[0,tj ] . Since ](qpγ(tj)) = θ for each j , the generalized

Toponogov theorem implies that there exists a sequence of comparison

triangles 4p̃q̃γ̃(tj) ⊂Mm with corresponding sides (all minimal geodesics)

of equal length and corresponding angles dominated by those in 4pqγ(tj).

In particular, 4p̃q̃γ̃(tj) ⊂ V (θ).

Since `(ηj) → ∞ as j → ∞ , we have `(η̃j) → ∞ as j → ∞ . Hence

{η̃j} must subconverge to a ray η̃ . Since Tη̃j ≤ θ for each j , we have

Tη̃ ≤ θ .

Since q is a critical point of d(·, p), there exists a minimal geodesic

σ emanating from p to q such that ](−σ̇(d(p, q)), η̇j(0)) ≤ π
2

. Let

4pσ(d(p, q))γ(tj) denote the triangle consisting of the edges σ , ηj , and

γ|[0,tj ] . Since 4pσ(d(p, q))γ(tj) has the same side lengths as 4pqγ(tj)

(with edges α , ηj , and γ|[0,tj ] ), it admits the triangle 4p̃q̃γ̃(tj) satisfy-

ing the angle inequalities in Lemma 8.2.5. In particular, ](p̃q̃γ̃(tj)) ≤
](−σ̇(d(p, q)), η̇j(0)) ≤ π

2
. Since the segment joining p̃ to q̃ is a subarc of

a meridian, we have κη̃j ≥ π
2

for each j . Hence, in the limit, κη̃ ≥ π
2

.



87

Lemma 8.4.5. Let the radial curvature of (M, p) be bounded below by that

of Mm with V (δ) free of cut points and N <∞, let q be a critical point of

d(·, p), let γ be a ray emanating from p, and let α be a minimal geodesic

joining p = α(0) to q . Then ](γ̇(0), α̇(0)) ≥ min( π
2N
, δ). Furthermore,

if Mm is not isometric to R2 and if δ > π
2N

, then ](γ̇(0), α̇(0)) > π
2N

.

Proof. Suppose ](γ̇(0), α̇(0)) < min( π
2N
, δ). Lemma 8.4.4 implies that

there exists a ray η̃ ⊂ Mm with Tη̃ < min( π
2N
, δ) and κη̃ ≥ π

2N
. But

Lemma 8.4.3 implies Tη̃ ≥ min( π
2N
, δ), a contradiction.

Now suppose Mm is not isometric to R2 and δ > π
2N

, and assume

](γ̇(0), α̇(0)) ≤ π
2N

. Lemma 8.4.4 implies that there exists a ray η̃ ⊂Mm

with Tη̃ ≤ π
2N

. But Lemma 8.4.3 implies Tη̃ >
π

2N
, a contradiction.

Theorem 8.4.6. Let the radial curvature of (M, p) be bounded below by

that of Mm with N < ∞ and V (δ) free of cut points. Then M is topo-

logically finite.

Proof. We prove the claim by showing that {qi} , the set of critical points

of d(·, p), is bounded. Suppose the set is unbounded. Let αi be a minimal

geodesic emanating from p to qi . Since `(αi) → ∞ , {αi} must subcon-

verge to a ray γ emanating from p . In particular, there exists α such

that ](γ̇(0), α̇(0)) < min(δ, π
2N

). But this is impossible by Lemma 8.4.5.

Theorem 8.4.7. Let the radial curvature of (M, p) be bounded below by

that of Mm containing a cut-point-free sector V (δ) with δ > π
2

. Suppose

Mm is not isometric to R2 and N = 1. If p is a critical point of infinity,

then M is homeomorphic to Rn , where n is the dimension of M .
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Proof. We prove the claim by showing that M has no critical point of

d(·, p). Suppose q were a critical point of d(·, p), and let α be a minimal

geodesic joining q to p . For any ray γ emanating from p , we must have

](α̇(0), γ̇(0)) > π
2N

= π
2

by Lemma 8.4.5. But since p is a critical point

of infinity, ](α̇(0), γ̇(0)) is ≤ π
2

for some ray γ emanating from p , a

contradiction.

Remark 8.4.8. If Mm is a von Mangoldt plane of nonnegative curvature

not isometric to R2 , then it satisfies the conditions for Theorem 8.4.7.

Remark 8.4.9. Let the radial curvature of (M, p) be bounded below

by that of a von Mangoldt plane Mm with nonnegative curvature. Let

r , rm denote the distance functions to the basepoints p , o of M , Mm ,

respectively. Let R := sup{rm(Cm)} ; by Theorem 5.1.1, R < ∞ if and

only if m′(∞) < 1
2
. Proposition 8.4.10 below, the Isotopy Lemma, and

Theorem 5.1.1 imply that if R <∞ , R can be explicitly determined, M

is topologically finite, and R is an upper bound on the radius of the set

S ⊂M that determines the topology of M .

Proposition 8.4.10. Let the radial curvature of (M, p) be bounded below

by that of a von Mangoldt plane Mm . Let r , rm denote the distance

functions to the basepoints p, o of M , Mm , respectively. If q is a critical

point of r , then r(q) is contained in rm(Cm).

Proof. Assuming r(q) /∈ rm(Cm) we will show that q is not a critical

point of r . Since M is complete and noncompact, there exists a ray

γ emanating from q . Consider the comparison triangle 4o, q̃, γ̃(ti) in

Mm for any geodesic triangle with vertices p , q , γ(ti). Passing to a

subsequence, arrange so that the segments [q̃, γ̃(ti)] subconverge to a ray,

which we denote by γ̃ . Since q̃ /∈ Cm , the angle formed by γ̃ and [o, q̃]

is > π
2

, and hence for large ti the same is true for the angles formed by
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[q, γ(ti)] and [p, q] . By comparison, γ forms angle > π
2

with any segment

joining q to p , i.e. q is not a critical point of r .

8.5 Improving on the Sector Theorem

In the Sector Theorem, the condition of finite total curvature can be

dropped.

Convention: For all geodesic segments γ : [o, `] → Mm , assume rγ(`) ≥
rγ(0) .

Lemma 8.5.1. (Lemma 3.1, [KT10]) Given Mm , let Vi := V (1
i
) for each

i = 1, 2, ... Assume that there exist a constant r0 > 0 and a sequence

{σi : [0, `i] → Vi} of geodesic segments such that σi([0, `i])
⋂
Br0(o) 6= ∅

for each i and that lim infi→∞ r(σi(`i)) > r0 . Then, limi→∞ ci = 0 holds,

where ci denotes the Clairaut constant of σi .

Lemma 8.5.2 below combines parts of Propositions 7.2.1 and 7.2.2 in

[SST, p. 220].

Lemma 8.5.2. (Propositions 7.2.1, 7.2.2, [SST03]) Given q ∈ Mm , let

γ : [0, s] → M , γ(0) = q be a geodesic not tangent to the parallel or

meridian through q . If ṙγ is nonzero on [0, s), then there exists a Jacobi

field X(t) along γ that can be expressed as

X(t) = sign
(π

2
− κγ

)
ṙ(t)

∫ r(t)

d(o,q)

m(r)√
m2(r)− c2

3dr

{
−c ∂

∂rγ(t)

+ ṙ(t)
∂

∂θγ(t)

}
on [0, s), where c is the Clairaut constant of γ .

Lemma 8.5.3. Given q ∈ Mm , let γ : [0, s] → Mm , g(0) = q be a

geodesic that is not tangent to the parallel or meridian through q . If ṙγ is

nonzero on [0, s), then there exists no conjugate point of q along γ|[0,s) .
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Proof. Each additive term in the expression for X(t) in Lemma 8.5.2

carries ṙ(t). Hence, ṙ(t) nonzero on [0, s) implies that the Jacobi field

X(t) is nonzero on [0, s).

Lemma 8.5.4 makes our modification of [KT10, Key Lemma] possible.

Lemma 8.5.4. Let Mm be such that lim infr→∞m(r) > 0. Let {σi :

[0, `i] → Mm} be a sequence of minimal geodesics such that `i → ∞,

ci 6= 0, and ci → 0. Then there exists L > 0 such that for all i ≥ L,

there does not exist any value t at which both ṙσi(t) = 0 and r̈σ(t) < 0

hold.

Proof. By contradiction; suppose that for any L > 0, there exists i ≥ L

such that ṙσi(ti) = 0 and r̈σi(ti) < 0 for some ti . Choose such a subsequence

and denote it {σi} . By reflectional symmetry and uniqueness of geodesics,

rσi attains its absolute maximum at ti . Since ci = m(rσi(ti)), ci → 0, we

have m(rσi(ti)) → 0. Since lim infr→∞m(r) > 0, m(rσ(ti)) → 0 implies

rσi(ti) → 0. But this is impossible, since `i → ∞ and σi is a minimal

geodesic.

Definition 8.5.5. Given any q ∈ M , M a complete Riemannian mani-

fold, we define the segment domain of q as

{v ∈ TqM | expq tv : [0, 1]→M is a minimal geodesic}

Remark 8.5.6. It is well known that the segment domain of any q ∈M
is star-shaped and closed. The interior of the segment domain of q ,

denoted I(q), is likewise defined as

{v ∈ TqM | expq tv : [0, 1)→M is a minimal geodesic}
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Note that expq is one-to-one on I(q), so if x is in the image of I(q),

denoted I(q)∗ , there exists a unique minimizing geodesic γ connecting q

to x , and there exists ε > 0 such that γ minimizes on (0, d(q, x) + ε).

Hence, if x is conjugate to q , x cannot be in I(q)∗ .

Lemma 8.5.7. Let {σi : [0, `i]→Mm} be a sequence of minimal geodesics

converging to σ : [0, `]→Mm , where σ is a subarc of a meridian. For all

i large enough, σi(`i) is in I(σi(0))∗ and σi(0) is in I(σi(`i))
∗ .

Proof. Since any subarc of a meridian is distance-minimizing, σ(`) is in

I(σ(0))∗ . Hence for i large enough, σi(`i) is also in I(σ(0))∗ . It follows

that σ(0) is in I(σi(`i))
∗ , since the above implies that σ(0) is joined to

σi(`i) by a unique minimal geodesic and σ(0) cannot be conjugate to

σi(`i). So for i large enough, σi(0) is in I(σi(`i))
∗ . It must also follow

that σi(`i) is in I(σi(0))∗ .

Remark 8.5.8. Below we give the original version of [KT10, Key Lemma],

followed by our modified version and its proof. The proof of our modified

version is closely modeled on that of the original version.

Lemma 8.5.9. (Key Lemma, [KT10]) Let Mm have finite total curvature.

For each r > 0, there exists a number δ(r) ∈ (0, π) such that σ([0, `]) ∩
Br(o) = ∅ holds for any minimal geodesic segment σ : [0, `]→ V (δ(r)) ⊂
M , along which σ(0) is conjugate to σ(`).

Lemma 8.5.10. (Modified Key Lemma) Let Mm be such that lim infr→∞m(r) >

0. For each r > 0, there exists a number δ(r) ∈ (0, π) such that σ([0, `])∩
Br(o) = ∅ holds for any minimal geodesic segment σ : [0, `]→ V (δ(r)) ⊂
M , along which σ(0) is conjugate to σ(`).
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Proof. By contradiction. To establish the existence of δ(r) ∈ (0, π), all

we need to do is show that there exists δ(r) > 0, since we have |θ(σ(0))−
θ(σ(`))| < π for any minimal geodesic segment σ : [0, `]→ M \ {o} . Put

Vi := V (1
i
) for each i . Assume that there exists a constant r0 > 0 and

a sequence of minimal geodesic segments {σi : [0, `i] → Vi} , with σi(0)

conjugate to σi(`i) along σi , such that σi([0, `i]) ∩Br0(o) 6= ∅ for each i .

We want to establish that the sequence of Clairaut constants, {ci} , con-

verges to 0 as i→∞ . We do this by showing that limi→∞ `i =∞ ; indeed,

this implies lim infi→∞ rσi(li) > r0 , whereupon by Lemma 8.5.1 {ci} → 0.

Suppose limi→∞ `i < ∞ or does not exist. Then there exists M < ∞
such that given any N , there exists i ≥ N such that `i ≤ M . Then we

have a subsequence of {σi} such that the endpoints {σi(0)} , {σi(`i)} are

confined to a compact set. Let {σi} denote this subsequence. Since each

σi is a minimal geodesic, {σi} must lie in a bounded set. By the Arzela-

Ascoli theorem, there exists a geodesic σ to which some subsequence {σij}
converges, and by construction σ must be a subarc of a meridian. Let

σ(0) be the point to which {σij(0)} converges and let σ(`) be the point

to which {σij(`ij)} converges. For j large enough, σij(0) is in I(σij(`ij))
∗

and σij(`ij) is in I(σij(0))∗ by Lemma 8.5.7. Remark 8.5.6 implies that

σij(0) cannot be conjugate to σij(`ij), a contradiction. Hence we establish

that lim infi→∞ rσi(`i) > r0 .

Since σi(0) and σi(`i) are conjugate, there exists a positive parameter

value ai at which ṙσi = 0 by Lemma 8.5.3. From our work above, we

have ci → 0 and `i → ∞ , and by assumption lim infr→∞m(r) > 0, so

by Lemma 8.5.4, there exists J such that for all i > J , we cannot have

r̈σi(ai) < 0. From this point on, assume i > J always. Since σi is tangent

to a parallel from above, rσi(ai) is the absolute minimum of rσi , implying

rσi(ai) ∈ Br0(o).
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Let ui ∈ [ai, `i] be a parameter value of σi such that rσi(ui) = r0 . Set

4i := the triangle oσi(ai)σi(ui). This triangle lies in Br0(o)
⋂
Vi . The

angle at σi(ai) equals π
2

by construction. The angle at o < 1
i
, so it tends

to 0 as i→∞ . This implies that the area of 4i tends to 0 as i→∞ .

Now consider the angle at σ(ui). On the one hand, since ci → 0, the

angle at σ(ui) must go to 0. On the other hand, the curvature function

Gm(r) attains its maximum and minimum on [0, r0] , so
∫
4i Gm → 0 as

i → ∞ . The Gauss-Bonnet theorem gives { sum of the interior angles

} = π +
∫
4i Gm, so we have { sum of the interior angles } → π as

i→∞ . This means that the angle at σi(ui) must approach π
2

as i→∞ ,

a contradiction.

Lemma 8.5.11. Suppose Mm is a noncompact complete rotationally sym-

metric plane that is von Mangoldt or Cartan-Hadamard outside a compact

set. If lim infr→∞m(r) = 0, then Mm has finite total curvature.

Proof. We prove our claim by showing that limr→∞m
′(r) exists and is

finite.

Let R > 0 be such that Mm is von Mangoldt or Cartan-Hadamard on

Mm \ BR(o). There exists r0 > R at which m′ < 0, for if m′(r) ≥ 0

for all r > R , then lim infr→∞m(r) > 0. Because m(r) > 0 on r > 0,

we cannot have m′(r) ≤ m′(r0) on [r0,∞). Hence there exists r1 > r0

such that m′(r1) < 0 and m′′(r1) > 0. Also Gm(r1) < 0. Since Mm is

von Mangoldt or Cartan-Hadamard on (R,∞), Gm(r) ≤ 0 on [r1,∞),

implying m′′(r) ≥ 0 on [r1,∞).

We claim m′ < 0 on [r1,∞). Indeed, if for some r ≥ r1 m′ ≥ 0, then

m′′[r1,∞) ≥ 0 implies m′ ≥ 0 for all r ≥ r1 , implying lim infr→∞m(r) >

0.
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Since m′ is an increasing function on [r1,∞) that is bounded above by

0, it must converge to a finite number.

Lemma 8.5.12. Let Mm be von Mangoldt or Cartan-Hadamard outside

a compact set. Then for each r > 0, there exists a constant number

δ(r) ∈ (0, π) such that σ([0, `])∩Br(o) = ∅ holds for any minimal geodesic

segment σ : [0, `]→ V (δ(r)) ⊂M , along which σ(0) is conjugate to σ(`).

Proof. Either lim infr→∞m(r) > 0 or lim infr→∞m(r) = 0. If lim infr→∞m(r) >

0, then the claim holds by Lemma 8.5.10. If lim infr→∞m(r) = 0, then

Lemma 8.5.11 applies, so Mm has finite total curvature. Lemma 8.5.9

(the original version of the Key Lemma) then implies the claim.

Remark 8.5.13. Below we give the statement and proof of the improved

Sector Theorem. The basic reasoning is identical to its counterpart in

[KT10] except that references to the Key Lemma are replaced by references

to Lemma 8.5.12.

Theorem 8.5.14. (Improved Sector Theorem) Let Mm be von Mangoldt

or Cartan-Hadamard outside a compact set. Then Mm has a sector with

no pair of cut points.

Proof. Let Mm be von Mangoldt or Cartan-Hadamard outside BR0(o) for

some R0 > 0. Fix any R1 > R0 , and in the setting of Lemma 8.5.12, let

δ(R1) ∈ (0, π) be the number such that if σ : [0, `] → V (δ(R1)) is a

minimal geodesic along which σ(0) is conjugate to σ(`), then

σ[0, `] ∩BR1(o) = ∅.

Proceeding by contradiction, suppose q ∈ V (δ(R1)) has a cut point

x ∈ V (δ(R1)). We will show that there exists a point conjugate to q in
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V (δ(R1)). If x is conjugate to q , we are done, so suppose not. Then let

α, β be minimal geodesics connecting q to x and bounding a region D .

The boundary of D only meets Cq at x because α, β are minimal. By

assumption x is in Cq but is not conjugate to q , so there exists a geodesic

in D emanating from q and meeting Cq in the interior of D ; that is, the

interior of D meets Cq . Since Cq is a tree by Lemma 2.5.9, the interior of

D contains an endpoint of Cq , which is conjugate to q . So from this point

on, assume q is conjugate to x ∈ V (δ(R1)) along a minimal geodesic γx .

Now we derive our contradictions. Suppose Mm \ BR1(o) is Cartan-

Hadamard. By Lemma 8.5.12, γx or any geodesic γ′ emanating from

q that is close enough to γx does not intersect BR1(o), implying that

Gm ≤ 0 along γx, γ
′ . By the Gauss-Bonnet Theorem (Theorem 2.3.1),

γx, γ
′ cannot intersect to form a bigon. Indeed, if such a bigon B existed

with angles θ1, θ2 , we have must have

0 ≥
∫
B

Gm = θ1 + θ2,

which is impossible. This implies that q cannot be conjugate to x along

γx , a contradiction.

Now we consider the case where Mm \ BR1(o) is von Mangoldt. By

Lemmas 2.5.15, 2.5.19, and 2.5.22, we can find a normal cut point y in

Cq arbitrarily close to x such that d(q, x) < d(q, y) and θx < θy < π . By

Remark 2.5.21, there exists a minimal geodesic βy connecting q to y such

that

](β̇y(0), τ̇q(0)) < ](γ̇x(0), τ̇q(0)),

and since y can be made arbitrarily close to x , we can ensure that βy

does not intersect BR1(o).

We now show that

`(γx) < `(βy) and rγx(s) > rβy(s)
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for all s ∈ (0, `(γx)). For each s ∈ (0, `(γx)), since θy > θx , there exists a

unique value t(s) of βy giving us

θα(s) = θβy(t(s)).

Since γx, βy cannot intersect in their interiors we have rβy(t(s)) < rγx(s) .

Hence for any given s , the set

Ss := {t ∈ (0, `(βy)) | rβy(t) < rγx(s)}

is nonempty. Now fix s0 ∈ (0, `(γx)). Let (a, b) be the connected com-

ponent of Ss0 containing t(s0). If we show that s0 ∈ (a, b), then we will

have rγx(s0) > rβy(s0) . If (0, `(γx)) ⊆ (a, b) then s0 ∈ (a, b) and there is

nothing to prove, so we can assume a > 0 or b < `(γx). We have

rγx(s0) = rβy(a) = rβy(b), 0 ≤ θβy(a) < θγx(s0) = θβy(t(s0)) < θβy(b) < π

so the conditions for Lemma 2.5.14 are satisfied. It follows that

a = d(q, βy(a)) < s0 = d(q, γx(s0)) < d(q, βy(b)) = b,

implying s0 ∈ (a, b) and therefore rβy(s0) < rγx(s0) . Since s0 was arbitrary

and Mm\BR1(o) is von Mangoldt, we have Gm(rγx(s)) ≤ Gm(rβy(s)) for all

s ∈ [0, `(γx)]. Recalling that q is conjugate to x along γx and applying the

Sturm Comparison Theorem (Theorem 2.5.3), we have that q is conjugate

to βy(t) along βy for some t ∈ (0, `(γx)]. But this is impossible, since βy

minimizes the distance from q to y and `(βy) > `(γx). Hence q cannot

have a cut point along γx , and this completes our proof.
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