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Abstract. We present a new family of discrete subgroups of SO(5, 1) isomorphic
to lattices in SO(3,1). In some of the examples the limit sets are wildly knotted
2-spheres. As an application we produce complete hyperbolic 5-manifolds that are
nontrivial plane bundles over closed hyperbolic 3-manifolds and conformally flat
4-manifolds that are nontrivial circle bundles over closed hyperbolic 3-manifolds.

§1. Introduction

Hyperbolic manifolds are complete Riemannian manifolds of constant
negative sectional curvature. Any hyperbolic k-manifold is a quotient of
the hyperbolic space H* by a discrete group of isometries that acts freely.

Let M be a closed orientable hyperbolic k-manifold. The composition
of the holonomy representation 7 (M) — SOgq(k,1) = Isom (H") and the
inclusion SOg(k,1) — SOg(n,1) is an isomorphism of the group my (M)
onto a discrete subgroup I' of SOg(n,1). The group I is convex-cocompact
(i.e. geometrically finite without parabolics). In fact T stabilizes a totally
geodesic copy of H* in H" and the I'-action on H* is cocompact. The
hyperbolic manifold H" /T is diffeomorphic to M x R"~* and the limit set
of ' is an unknotted (k — 1)-sphere 0., H* in 0., H".

The quasiconformal deformations of I' are also convex-cocompact [JM]. In
general, the space CC™ (w1 (M)) of faithful discrete representations of 7y (M)
with the convex-cocompact image is an open subset of the real-algebraic
variety Hom (w1 (M), SOg(n,1)). It is conjectured that any faithful discrete
representation of 71 (/) lies in the closure of CC™ (w1 (M)).

1.1. Theorem. There exists a closed oriented hyperbolic 3-manifold M and
a representation p € CC®(w1(M)) such that

(1) the hyperbolic manifold H® /T is the total space of a nontrivial plane
bundle over M, so it is not homeomorphiic to M x R?;

(2) the limit set A(T') of the group T' = p(w1(M)) is an unknotted 2-
sphere;
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4 KLEINIAN GROUPS AND HYPERBOLIC 5-MANIFOLDS

(3) the conformally flat manifold Q(T) /T is the total space of a nontrivial
circle bundle over M where Q(T') = O, H® \ A(T).

According to Anderson [An], the total space of any vector bundle over a
closed negatively curved manifold admits a complete Riemannian metric of
sectional curvature K with —a? < K < —1. Theorem 1.1 represents some
progress towards the following problem.

1.2. Problem. Let E be the total space of a vector bundle over a closed
manifold M. Under what conditions does E admit a complete hyperbolic
metric? (or, more generally, a complete locally symmetric Riemannian met-
ric of negative sectional curvature?)

The author showed in [Bel] that, if M is a closed negatively curved
manifold of dimension > 3, then only finitely many vector bundles over
M can admit complete locally symmetric Riemannian metrics of negative
sectional curvature.

Kapovich [Ka2] proved that only finitely many plane bundles over a closed
orientable surface M, of genus g can be given complete hyperbolic metrics.
On the other hand Luo [L] (cf. [GLT], [Kal], [Kuil,2]) have constructed a
complete hyperbolic metric on a plane bundle over M, provided its Euler
number e satisfies |e|] < ¢g. Hyperbolic structures on some nonorientable
vector bundles over nonorientable surfaces have been constructed in [Be2].

1.3. Theorem. There is a closed hyperbolic 3-manifold M and a represen-
tation p € CC®(w1(M)) such that the limit set of the group p(mi(M)) is a
wild 2-sphere in Oso HO.

First examples of this sort are due to Gromov, Lawson and Thurston
[GLT] who found convex-cocompact surface groups actions on H?* such
that the limit sets are wild circles in 9., H?*. Apanasov and Tetenov [AT]
have discovered a closed hyperbolic 3-manifold M and a representation
p € CC4my(M)) such that the limit set of the group p(m1(M)) is a wild
2-sphere in O, HY.

To prove 1.1 and 1.3 we build fundamental domains for the discrete groups
in question. Roughly speaking, these fundamental domains are “suspen-
sions” of the necklace-shaped fundamental domains of [GLT] and [Kuil,2].
This is similar to suspending an (un)knotted circle in S® to produce an
(un)knotted 2-sphere in S%. In the proof of 1.1 the necklaces are unknotted;
knotted necklaces are used in 1.3.

1.4. Corollary. There is a closed oriented hyperbolic 3-manifold M such
that the space CC®(my(M)) is not connected.

In fact any two representations lying in the same connected component
of CC™(m1(M)) are topologically conjugate on H" U 0., H™. Therefore, 1.4
follows from either of the two theorems above.

Note: recently Apanasov [Apl] announced some of the results of the
present paper; he uses his block-building method to produce discrete groups.
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82. Fundamental polyhedrons

2.1. Hyperbolic and spherical polyhedrons

For the sake of visualization we always deal with spherical polyhedrons at in-
finity rather than hyperbolic polyhedrons. Recall that a (convex) hyperbolic
polyhedron in H" is the intersection of a collection of half spaces. Similarly,
a spherical polyhedron in 8"~ = 0,,H" is defined to be the intersection of
a collection of round (conformal) balls.

The ideal boundary of a half space is a round (conformal) ball in the
sphere at infinity. Conversely, given a round ball in 0,,H", its convex hull
in H” is a half space. Thus convex hyperbolic polyhedrons and spherical
polyhedrons are in one-to-one correspondence.

Any polyhedron is the union of its faces; we assume faces are closed. Thus,
the polyhedron itself is a face of codimension zero. Faces of codimension
one (two, three) are called sides (edges, vertices, respectively).

2.2. Poincaré’s Polyhedron Theorem

The way we prove discreteness in this paper is by applying Poincaré’s Poly-
hedron Theorem. We refer to [EP] for a proof and definitions.

Basically Poincaré’s Polyhedron Theorem says that given a polyhedron P
in the hyperbolic n-space and a collection of isometries g1, ... gk ... pairing
the sides of P under certain conditions on these “initial data” the group
I' generated by g1, ...gk ... is discrete and P is a fundamental polyhedron
for I'. The I'-images of P tesselate H". On the other hand, any discrete
group of hyperbolic isometries arises this way because it has a fundamental
polyhedron (e.g. a Dirichlet fundamental polyhedron).

However, in practice, the conditions of Poincaré’s Theorem are extremely
difficult to verify. We can handle the verification in 4.4 only because in our
case the fundamental polyhedron and the side pairing transformations have
certain symmetries.

Yet in the special case when P has finitely many sides and all the isome-
tries g1, ..., gx are reflections in the sides of ® most conditions of Poincaré’s
theorem are redundant. Namely we only have to check that all dihedral an-
gles of ® are submultiples of 7. In this case we say that I' =< ¢g1,...,9x >
is a reflection group.

We now describe the conditions to be checked in Poincaré’s Polyhedron
Theorem (see [EP] for details). We start with a convex polyhedron P in
H"™. The condition Pairing says that side pairing transformations of P are
defined so that each of them maps the interior of P to a subset disjoint
from P. The condition Finite means that P has finitely many sides. First
Metric is the condition that any two faces of P are in positive distance.
The condition Cyclic guarantees that copies of P can be laid out one by
one around any edge so that after finitely many steps P arrives at its initial
position.
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More generally, one can start with a collection {P; : i € I} of convex
polyhedrons. All the conditions above make sense. In addition, we have
to assume the condition Connected that requires the identification space of
U,cr P induced by Pairing be connected.

2.3. Suspensions over necklaces

In this section we construct a spherical polyhedron in S* = 0.,,H®. Under
some extra assumptions the polyhedron will be a fundamental set for a
discrete group.

Denote by S® the unit sphere in R*. We identify R* with S%.

A necklace N = N, is a finite cyclically ordered sequence of v closed
round balls in S* satisfying the following conditions.

(i) The radii of the balls are equal.

(i) Every ball in N meets the unit ball in R* in an exterior angle /2.

(iii) There is o € (0,7/2] such that adjacent balls meet in an exterior
angle a.

We say that a necklace is embedded (cf. [Kui2]), if nonadjacent balls in N
do not meet. Fix g € (0,7/2) and a necklace N containing v balls. Consider
the (uniquely determined) round balls By and B, in R* with centers at 0
and oo, respectively, meeting the balls of N in an exterior angle 3. The
inversion i in the unit sphere S® transposes By and B... We shall refer to
these two balls as the big balls (or just the b-balls).

Now we consider an arbitrary pair of adjacent balls B and B’ centered
at points C' and C’, respectively. Clearly, the balls B, B’ and Bg cover the
triangle ACO0C” if and only if a + 26 > 7.

Assume that a + 23 < 7 (see Figure on the next page). Denote by X
and Y the points where the bisectrix of the angle ZC0C” meets BN B’ and
0By, respectively. It is easy to see that, there exists a unique round ball By
centered at a point 7' € (X,Y) such that By meets each of the balls B, B’
and By in an exterior angle 7/2. It is clear that the balls By, By, B and B’
cover ACOC"; for this reason, we say that the ball B fills the hole between
the balls By, B and B’.

Clearly, the ball i(By) is orthogonal to B, B and B’, and the balls
i(Br), Boo, B and B’ cover the triangle ACooC”.

Varying the pairs of adjacent balls we get v balls of the form Br, and
then v other balls of the form i(By). We shall refer to these 2v balls filling
holes as the f-balls.

Under the assumption a + 23 < m, we call the set SgN of f-balls, the b-
balls and the necklace balls the suspension over the necklace N. Otherwise
we use this notation for the set of b-balls and necklace balls. (We emphasize
that the suspension is uniquely determined by N and f3.)

We say that a suspension over the necklace N is embedded if the f-balls
are pairwise disjoint and each f-ball meets exactly two necklace balls.

Given SsN, denote by F' = F(N,[3) the spherical polyhedron obtained
by removing from S* the internal points of the balls of the suspension. The
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convex hull of FF = F(N, ) in H" is a convex finitely-sided polyhedron.

2.4. The template construction

We describe some preliminary construction introduced by Gromov, Lawson,
Thurston [GLT] (see also [Kuil,2]). Fix ¢ € [0,7/2) and relatively prime
integers g and p with 1 < ¢ < p. Consider the curve I'y ,, . in the unit sphere

83 = {(z,w) € C2 =R*: |2]* + |w|* = 1}

parametrized by T'(t) = (e?cose, ePi'sine),t € [0, 27].

For w = 2™/ and j € Z/vZ, the unit vectors 7; = (w%cos e, wPisine)
subdivide I'y ,, . into equal parts. The polygonal curve v, , ., in S* whose
vertices are 7; is the so called template (see [GLT]).

2.5. Templates and Suspensions

Here is a concrete example of a suspension. Given o € (0,7/2] and v > 5, we
consider a unique necklace 9 =N, , 4. p - such that for any j the intersection
of jth ball of M and S is a metric ball centered at n;. For 3 € (0,7/2),
we next consider the suspension Sz91. Note that 9 and St are uniquely
determined by the choice of ¢, p, e, v, a and 3.

2.6. Example. Suppose that ¢ = 0 and ¢ = 1. Then the template v, ...
is a plane regular v-gon. It is straightforward to verify in this case that if
v > 5, the corresponding necklace g = Na,1,1,p,0 and the suspension SzNg
are embedded.

2.7. Claim. For v large enough, the necklace N = Na v g.p.e and the sus-
pension SN are embedded.

Proof. For fixed ¢,p and €, we vary v. As v tends to oo, the template v, .
approximates the smooth knot I'; , .. Thus, locally, the necklace 91 looks
like the necklace 9ty whose balls centered at the vertices of a plane regular
v-gon. Since, for v > 5, Mg and Sy are embedded so are N the SN, for
every v large enough. [

63. Reflection groups

3.1. Convention. Throughout the section we suppose that

az%wherelEZ, [ >4 and 6z%wherem€Z,mZ3.

3.2. Reflection groups coming from suspensions

Given such «, 3 and an integer v > 5, we fix a necklace N and the suspension
SsN. Consider the group I' = I'(N, 3) generated by the inversions in the
spheres that bound the balls of the suspension.
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Suppose that the necklace and the suspension considered are embedded.
Then by Poincaré’s Polyhedron Theorem [EP] applied to the natural ac-
tions of I' in H®, the group I is discrete and F is a spherical fundamental
polyhedron for I'.

Poincaré’s theorem allows us to write down a presentation of I'. Namely,
' is generated by reflections in the sides of F' (the number of the sides is
3v + 2 when a + 24 < 7 and v + 2 otherwise). Each generating reflection
i gives the relation i2 = 1. If the angle at an edge e is equal to 7/n, the
corresponding relation is (i1i2)™ = 1, where i1 and iy are the reflections
in the sides of F' abutting e. The relations above define I'. Note that the
integers v,l and m determine the presentation uniquely.

3.3. Example: reflection lattices in Isom(H?). Assume N = Ny, the
necklace whose balls are centered at the vertices of a plane regular v-gon.
Since v > 5, the necklace My and the suspension Sy are embedded (see
2.6). Then the group I' = I'(Mg, B) is the natural extension to S* of a
discrete cocompact subgroup of the group of isometries of H?. In particular,
the limit set of such a I' is a round 2-sphere.

3.4. Theorem. Given k € {1,2}, let Ty be a reflection group (i.e. T is a
discrete group generated by reflections in the sides of a convex finitely-sided
polyhedron Py ). Then the actions of Ty and Ty on H™ are topologically
conjugate if amd only if there is a homeomorphism of Py onto Py preserving
the face structure.

Proof. Suppose that there is a homeomorphism f : P, — P, preserving
the face structure. Then f defines an isomorphism ¢¢ : I'y — I's. Clearly,
f is ¢s-equivariant. Hence, f can be extended to a ¢g-equivariant self-
homeomorphism of H”.

Conversely, assume f is a homeomorphism of H” equivariant with respect
to an isomorphism ¢y : I't — I's. For any reflection group I', the union of
all the hyperplanes which are the fixed-point-sets of reflections in I' splits
H"™ into the disjoint union of convex polyhedrons; these are the so-called
chambers of T'. For example, the chambers of T'y, are of the form ~(P) where
v € I'y. Given a hyperplane H, that is the fixed-point-set of a reflection
r € Ty, the set f(H,) is the fixed-point-set of a reflection ¢;(r) € T'y; so
f(H,) is a hyperplane. It follows that f takes chambers of I'; to chambers of
I preserving the face structure. In particular, f(Py) is a chamber, therefore
f(Py) = ~(Py) for some v € T;. Hence v ' o f: P, — Py is the desired
homeomorphism. [J

3.5 Corollary. There is a cocompact reflection subgroup T' < Isom(H?)
such that CC®(T') is not connected.

Proof. Any embedded necklace N defines an isotopy class of knots in the
unit sphere S* C R*. Given the suspension SN, let F be the spherical
polyhedron obtained by removing from S* the internal points of the balls of
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the suspension. The interior of F' is homeomorphic to C' x R where C' is the
complement of a knot in the isotopy class defined by N. Thus m(F') = 7((C).

For o and v as in 3.1 and consider embedded necklaces 9t =N, 1 4,p.- and
MNo = Na,v1,p,0 (see 2.5-2.7). We assume € € (0,7/2) and p > g > 1; notice
that in this case the necklace N, ¢.p,c is “knotted”. Reflections in the sides
of the corresponding spherical polyhedrons F' = F(2N, 3) and Fy = F (N, )
generate discrete groups I and Ty (see 3.2). Note that T' = T'.

Assume CC®(T) is connected. Then according to Theorem 8.1 the groups
I' and I'g are topologically conjugate on H°. Therefore, by Theorem 3.4 the
chambers F' and Fy are homeomorphic. The group of a nontrivial (tame)
knot cannot be cyclic, so 71 (F') is not isomorphic to Z. On the other hand
m1(Fo) = Z, a contradiction. [

§4. Main construction

In §3 we have constructed some discrete reflection subgroups of Isom(H?)
that are isomorphic to cocompact lattices in Isom(H?). The groups will be
used in the proof of Theorem 1.3. Now we construct more subtle exam-
ples of discrete subgroups of Isom(H?®) isomorphic to cocompact lattices in
Isom(H?). These are to be used in the proof of Theorem 1.1.

4.1. Convention. Throughout the section we suppose that

2
azgwhereyez, v>5 and ﬁz%wheremeZ, m > 2.

4.2. Set up

Given such a and 3, we fix a necklace N that contains exactly v balls and
the suspension Sg/N. Assume that N and SN are embedded. Notice that
the suspension contains f-balls since a + 206 < 7.

We are going to define side pairing transformations for the spherical poly-
hedron F = F(N, 3). First, we introduce some notations.

Each of the balls of the suspension determines the only side of F' (that
is the intersection of the ball and F). For this reason, we use the following
terms: b-sides, necklace sides, f-sides.

It follows from our construction that the inversion 7 in the unit sphere in
R* transposes b-sides, preserves necklace sides and carries f-sides to f-sides.
Given a side s of F', denote by is the reflection in the side. Now let s be an
arbitrary necklace side determined by a necklace ball B;. Let B;_1 and B;1
be the necklace balls adjacent to B;. Consider the segment in R* connecting
the centers of B;_1 and B;;; and the 3-plane p in R* meeting the segment
in the middle and orthogonal to it. It follows from our construction that p
passes through the origin and the center of B;; moreover, the ball filling the
hole between B;_1, B; and the ball filling the hole between B;, B;;1 are
symmetric with respect to p. Hence the reflection 7, in the plane p preserves
the side s.
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We define side pairing transformations for F' as follows. If s is a necklace
side, the side pairing transformation of s is defined to be the half-turn r,, o,
that preserves s. Otherwise, the side pairing transformation of the sides s
and i(s) is defined to be i ois. Denote by I' the group generated by all the
transformations pairing sides of F'.

Below we describe conditions needed to make I' discrete.

4.3. Torsion Condition

Let B* be the unit ball in R* having hyperbolic metric; this is a standard
model for the hyperbolic 4-space. Denote by H the subgroup of I' generated
by the half-turns pairing necklace sides. Clearly, H acts on B* by hyperbolic
isometries. The half-turns generating H pair the sides of the hyperbolic
polyhedron Py obtained by removing from B* the interior points of the
necklace balls.

In fact, the group H has been studied in [Kuil,2]. All the edges of Py
belong to one cycle and the sum of the angles at these edges is equal to
27. Denote by h a cyclic transformation of an edge e of Py. Kuiper [Kuil]
has observed that h has a fixed point in e which is precisely the orthogonal
projection of 0 into the 2-plane e. Let e* be a 2-plane in B* meeting e in
the fixed point and orthogonal to e. Then h is the product of two rotations,
p and p, whose fixed point sets are e and e™, respectively. Since the sum
of the angles at the edges of Py is equal to 27 the rotation p = 1.

Kuiper called the rotation p- the torsion of Py. He has shown that the
condition p* = 1 (the so-called Torsion Condition) is sufficient to make H
discrete.

4.4. Lemma. Let I' be the group constructed in 4.2 for an embedded sus-
pension over an embedded necklace. If the Torsion Condition holds, then I’
is discrete and F' is its spherical fundamental polyhedron.

Proof. Let P be the convex hull of F in H®. Since any side of P is the
convex hull of a unique side of F', we use the terms f-sides, b-sides, necklace
sides for sides of P. Also we use the same symbols for inversions in R* and
their extensions to H®. We are to apply Poincaré’s Polyhedron Theorem
[EP, Theorem 4.14] to show that P is a hyperbolic fundamental polyhedron
for T

The conditions Connected and Finite are satisfied trivially. The condition
First Metric holds since no two balls of the suspension are tangent. Clearly
the condition Pairing can be reduced to (i).

(i) For any side pairing transformation g, the sets g(int(P)) and int(P)
are disjoint.

To verify (i) fix an arbitrary side pairing transformation g that pairs
the sides s and g(s). Then either g = i 0 i, or g = r, 0is. First, assume
g = iois. Since P is convex, is(int(P)) and int(P) are disjoint. Therefore, (io
is)(int(P)) and i(int(P)) = int(P) are disjoint as desired. Second, suppose
that g = 1, o is;. Consider a (unique) half space H with H N P = s. Then
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is(int(P)) C H, becasuse P is convex. By construction, H is r,-invariant.
Thus, (7, o is)(int(P)) and int(P) are disjoint and hence (i) holds.

Since Finite implies First Cyclic [EP, p128], the condition Cyclic is re-
duced to (ii) and (iii).

(ii) For each edge cycle, the sum ¥ of the angles at the edges of the cycle
is of the form 27 /n, where n is a positive integer.

(iii) Let e be an edge of P from an edge cycle with ¥ = 27 /n and let h
be a cycle transformation of e. Then A™ = 1.

We now check (ii) and (iii). There are four types of edge cycles; we shall
consider them separately.

Start with an edge cycle consisting of two edges with the right angles at
them; there are exactly v such cycles. Each of the edges lies on the boundary
of a b-side and a f-side. Fix an edge e in the cycle and denote by b and f the
b-side and f-side, respectively, abutting e. Then for the cycle transformation
h of e we have

h:(ifoi)o(io’ib) :ifoib.

Hence h is the rotation about e by the angle 7. So, in the case considered,
h? =1and ¥ = 2-7/2 = 7. Thus, in this case (ii) and (iii) have been
checked.

Besides the cycles already considered, there are v other cycles consisting
of two edges; they can be described as follows. Consider an arbitrary neck-
lace side s and the b-sides b and i(b). Let an edge e lie on the boundary of
s and b. Then the edge i(e) lies on the boundary of s and i(b). We describe
a trip of e round the edge cycle. The transformation ¢ o i, maps e to i(e).
Then 7, o is carries i(e) to itself. Then iy o i returns i(e) back to e and,
finally, is o r, carries e to itself. So

h = (isory)o(ipoi)o(rpois)o(ioip), Y=4-w/2m = 2n/m.

Since the inversions in orthogonal spheres always commute, 7, commutes
with i, 4, i, and ¢ commutes with i;. Then h = is 0 iy 0 i5 0 4. Clearly,
is 0 0p is a rotation about e by the angle 7 /m and therefore K™ = 1. So (i)
and (ii) hold.

There are exactly v cycles consisting of four edges; they can be described
as follows. Consider an arbitrary necklace side s and the corresponding 3-
plane p; put r = r,. Also consider those f-sides which meet s; if we denote
one of them by f, they are f, r(f), i(f) and r(i(f)). Let an edge e lie on
the boundary of s and f. We describe a trip of e round the edge cycle. The
transformation ioiy maps e to i(e). Then roig carries i(e) to r(i(e)). Then
ir(py © @ maps r(i(e)) to r(s) and finally, s o r returns r(e) back to e. So

h = (isor)o (ippoi)o(rois)o(ioiy), Y=4-7/2=2r.

As above, the inversion i, commutes with 4,7, i, and the inversion i
commutes with 7. Then h = 704,y o7 ois. Since the sides f and r(f) are
symmetric with respect to p we get h = 1. Hence (i) and (ii) hold.
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It remains to consider the only edge cycle consisting of v edges. Each of
the edges lies on the boundaries of two necklace sides. Applying half-turns
we arrange a travel of a chosen edge e round the cycle. According to 4.5,
h = po p* is a cycle transformation of e. Since ¥ = v - 27/v = 27 we have
p = 1. In addition, by the Torsion Condition, p~ = 1. So h = 1; therefore
the conditions (i) and (ii) hold.

The proof of the lemma is complete. [

4.5. Example: cocompact lattices in Isom(H?). Assume N = My,
the necklace whose balls are centered at the vertices of a plane regular v-
gon (see 2.6). Since v > 5, the necklace 9y and the suspension Sz, are
embedded (see 2.6). The Torsion Condition holds trivially. Then the group
I' = T'(No, B) constructed in 4.2 is the natural extension to S* of a discrete
cocompact subgroup of the group of isometries of H?. In particular, the
limit set of such a I' is a round 2-sphere.

We next describe a general construction for which all assumptions of 4.4
are satisfied. Start with the necklace 91 = M, . 4, and the suspension
SsN. keeping in mind that, by 4.1, o = 27 /v and = 7/2m.

4.6. Proposition. Given q,p and m, there exist ¢ € (0,7/2) and v such
that the necklace M= N, 1 q.p,c and the suspension SzMN are embedded and
the Torsion Condition holds.

Proof. Kuiper [Kui2] has proved that his Torsion Condition is equivalent to
the following condition discovered by Gromov, Lawson and Thurston [GLT]

(1) T:g—TeZ,
T

where 7 is the torsion along each edge of the template v, , . (see [GLT])
and 27T is the total torsion of the template. The calculations below were

done in [GLT] and [Kuil]:
cos cos? e - sin? (2¢7 /v)-cos (2pm/v) + sin® e-sin® (2pr /v) -cos (2q7 V)
T =
cos? e-sin? (2¢7/v) + sin’ e-sin? (2pr/v)

(2)

- sin? 2qw - cos 2pw + u-sin® 2pw-cos2qw

sin’ 2qw + u-sin? 2pw 7
here w = 7/v and u = tg?e.

Taking into account that 0 < ¢ < p and assuming v > 2p we get 0 <
2wq < 2wp < 7. So cos2wq > cos2wp. Then (2) implies cos2wq > cosT >
COs 2wp.

Since 7 € (0,m) [GLT], we get ¢ < T = v7/21 < p. It follows from (2)
that

3) te?e = u = sin? 2qw-sin (p — T)w-sin (p + T)w

sin? 2pw-sin (T — q)w-sin (T + q)w
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Suppose that 7' is an integer. Then, for any e satisfying (3) and for any
v > 2p, the template 7, ., is such that the Torsion condition (1) holds.
For fixed ¢,p and T, we vary v. As v tends to oo, u = u(v) tends to

@ p?—T?
00 = p—2o T2 — q2 .
Since us > 0 we have us, = tg?c., for some co, € (0,7/2). There-

fore, as v tends to oo, the template v, , -(,),, approaches the smooth knot
Lype..- Hence, locally, the necklace M, , 4.2y l0oks like the necklace
MNo = Na,v,q,p,0 whose balls centered at the vertices of a plane regular v-gon.
Since My and S are embedded, so are Mo p g p.c(v) a0d SN vg.p.ev)s
for every v large enough. [J

4.7. Remark. Let us discuss the effect of the choices of o and  and v we
made in 3.1 and 4.1. Any point of OF lies in the intersection of at most
three sides. Moreover, given a collection of sides of F', the intersection of
the sides is not a point; it is either empty or it has a positive dimension.

4.8. Theorem. We assume that 1 is either the group satisfying the assump-
tion of 4.4 or the group constructed in 3.2. Then I" is convex-cocompact, in
particular the limit set of T is homeomorphic to the 2-sphere.

Proof. Since P has finitely many sides, I' is geometrically finite [Bo|. Hence,
it suffices to prove that I' has no parabolics. The limit set of I' consists of
conical limit point and bounded parabolic points [Bo|. According to [Tu,
Theorem 2.4], each bounded parabolic point is I'-equivalent to a point that
lies on F' = O P and, conversely, any limit point that lies on F' is a bounded
parabolic point; moreover, F' contains at most finitely many limit points.

Assume p € F is a (bounded parabolic) limit point. So the stabilizer I,
of the point p in I' is an infinite group. In particular, p cannot lie in the
interior of F', since no point of the interior of F' is stabilized by an element
of I'. Thus p € OF. The intersection of F' and the T'-orbit of p is a finite set
{7(p) : k=0,...,n} where 7 is the identity.

Let B, be a I',-invariant horoball centered at p. Since I' is geometrically
finite, one can choose B, so small that

(i) B, Ny(B,) =0 for all v € T" and,

(ii) if PN~y(B,) # 0, then v =, for some k =0,...,n and,

(iii) for any k = 0,...,n, the horoball v, (B,) intersects only those faces
of P whose ideal boundaries contain v (p).

This follows from [Bo, Proposition 4.4] and the observation that any
standard parabolic region at p contains a horoball centered at p.

The horosphere S, = 9B, is identified with R* and T', acts on S, by
euclidean isometries (to visualize it, one can conjugate T’ in Isom(H®) so
that p = co € HP).

The fundamental polyhedron for this action is the union of convex (closed)
euclidean polyhedrons Ej = ’y,:l(P N7 (Sp)); note that Ey = PN S,. It
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defines a tesselation of S, where any tile is of the form y(Ejy) with v € T',,
and k=0,...,n.

We are to show that the tesselation has finitely many tiles (therefore,
I', is a finite group which contradicts the assumption that p is a bounded
parabolic point).

All tiles have the same combinatorial structure. In fact, according to 4.7,
there are only three possibilities as follows. If p belongs to exactly one side,
then FEj is a half space. In case p lies on exactly two sides, then Fj is the
(nonempty) intersection of two half spaces. Finally, if p belongs to three
sides, Ej is the intersection of three half spaces such that their boundary
hyperplanes have a common face.

We conclude that any tile must have exactly one face of the smallest
dimension. This face has the property that any euclidean ray that starts at
a point of the face and passes through a point of the tile is contained in the
tile.

Fix a tile £ with the face f of the smallest dimension. Choose a point
g € f. A small neighborhood of ¢ in S, is covered by finitely many tiles
abutting f. Since all tiles have the same combinatorial structure, f is the
face of the smallest dimension in these tiles. Hence the union of the tiles
contains any ray that starts at ¢, hence the tiles cover S},. Thus S, is covered
by finitely many tiles and, hence, I',, is a finite group. A contradiction with
the choice of p. Therefore I' is convex-cocompact as wanted.

Finally, since I' is a convex-cocompact group isomorphic to a cocompact
lattice in Isom(H?), the limit set of I' is homeomorphic to the 2-sphere
[Tu]. O

4.9. Boundary groups

A slight modification of our construction yields discrete groups on the boun-
dary of CC™(T") where T is a cocompact reflection subgroup of the group of
isometries of the hyperbolic 3-space. Such groups are known in abundance in
the classical Kleinian group theory. For example, if ' is a surface group, the
boundary of CC3(T") contains regular b-groups (being geometrically finite
group with parabolics) as well as degenerate groups. However, if I" is a lattice
in a higher dimensional hyperbolic space, little is known. First examples of
boundary groups are due to Apanasov [Ap2]. We provide a very simple
example of a boundary group.

4.10. Theorem. There is a cocompact reflection subgroup T' < Isom(H?)
and a discrete faithful representation p of T' into Isom(H™), for any n > 4,
such that

(1) peoCcC™T) and

(2) p(T) is a geometrically finite group that contains parabolics and

(3) the groups T and p(T') are topologically conjugate on H™.

Proof. We first prove (1) and (2). One can assume that n = 4. (Indeed, for
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any m < n, the inclusion Isom(H"™) < Isom(H") takes geometrically finite
groups to geometrically finite groups [Bo] and parabolics to parabolics).

We next present a spherical polyhedon in R? that is to be a fundamental
polyhedron for p(T").

Fix a plane L in R? passing through the origin and consider a regular
v-gon in the plane centered at the origin where v > 5. To the vertices of
the v-gon we place metric balls of equal radii such that adjacent balls form
an exterior angle 7/2. By analogy, we call them necklace balls.

In addition, we consider two disjoint half spaces in R? that are symmetric
with respect to L and, moreover, each of them forms an exterior angle
m/3 with any necklace ball. Note that these two half spaces are uniquely
determined by L, in particular, their boundary planes are parallel to L. Any
half space can be thought of as a conformal ball in R3. We refer to the half
spaces as the big balls; they are tangent at the point {oo} € R3.

The complement in R3 to the union of the necklace balls and big balls
is a spherical polyhedron F'. Consider a group generated by reflections in
the sides of F'. Since all dihedral angles of F' are submultiples of 7, the
group is discrete and F' is its fundamental polyhedron. Moreover the group
is isomorphic to a cocompact reflection subgroup I' of Isom(H?) described in
3.3 for « = 7w/2 and # = 7/3. This defines a faithful discrete representation
p of T into Isom(H*). The group p(T') is geometrically finite since F has
finitely many sides. Also the composition of the reflections in the boundary
spheres of big balls is a parabolic element. This proves (2).

To show (1), note that we can slightly perturb the big balls, so that
after the perturbation, they are disjoint while all the angles are the same.
The reflections in the sides of the perturbed spherical polyhedron generate
a convex-cocompact group isomorphic to I'. This defines a sequence pj €
CC*(T) that converges to p.

Finally, let us prove (3). Given an inclusion H™ C H", any polyhedron
P C H™ defines a unique polyhedron in H" which is the pre-image of P
under the orthogonal projection H” — H™. Thus the groups I' and p(I")
have preferred fundamental polyhedrons (chambers) in H™. It is easy to
see that the chambers are face preserving homeomorphic. Therefore, by
Theorem 3.4, T and p(T") are topologically conjugate on H”. [

4.11. Remark. One can easily generalize the construction above to produce
more boundary groups. For instance, we can start with a knotted necklace
whose balls are orthogonal to a hyperplane in R*; then we add two big balls
that are disjoint half spaces in R* symmetric with respect to the hyperplane.
If necessary, we also add filling balls. If the angles are chosen properly,
the group generated by reflections in the boundary spheres of the balls is
discrete and isomorphic to a lattice in Isom(H?). Another idea is to define
more sophisticated side pairing transformations, similarly to what was done
in 4.2.
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§5. Core submanifolds and the Euler class

Let I be a discrete convex-cocompact group satisfying the assumption of
4.8 and let GG be a torsion-free subgroup of I' of finite index (which exists by
the Selberg lemma). Passing to a subgroup of index two, if necessary, we can
assume G preserves orientation. Since I' is isomorphic to a cocompact lattice
in Isom(H?), the group G is the fundamental group of a closed oriented
hyperbolic 3-manifold M (which is uniquely determined up to an isometry
by the Mostow Rigidity Theorem).

In this section we construct an embedding M «; N = H°/G inducing a
homotopy equivalence. We next study the Euler class x}; of the embedding
(or, equivalently, the normal Euler class of i(M) in N). In particular, we
shall prove the following

5.1. Theorem. There exists a closed oriented hyperbolic 3-manifold M
and a topological embedding of M into some complete oriented hyperbolic
5-manifold N such that

(i) the Euler class X3, of the embedding is nonzero;
(ii) the embedding induces a homotopy equivalence.

5.2. Euler class and intersections

Let M = M™ and N = N"** be orientable manifolds without boundary.
Let M —; N be a proper (topological) embedding.

According to a standard definition [D], the Thom class 73} of the embed-
ding i is a generator of the group H*(N, N \ M;Z) ~ Z chosen in a natu-
ral way. The image of 75 under the homomorphism H*(N, N \ M;Z) —
H*(M;Z) induced by the composition of the inclusions M <; N <,
(N,N \ M) is said to be the Euler class x4, of the embedding.

There is a version of the Poincaré duality for noncompact manifolds (see
e.g. [Mass]). In particular, there is a natural isomorphism of the exact
sequences of the pairs (N, N\ M) and (N, M):

. — H¥(N,N\M:Z) 2 H¥N:Z) — H¥N\M:Z) — ..

d p !

L — H>(M;7Z) — H°(N;Z) — H(N,M;Z) — ..
where H* means the singular cohomology and HZ° means a homology of
infinite chains [Mass]; the vertical arrows are isomorphisms; moreover, D is
the Poincaré isomorphism.

Now we present some calculations connecting the Euler class and the
intersection number. We recall that, for homology classes © € H:°(N;Z)
and y € Hy(N;Z), their intersection number (x,y) is equal to z[y], where
Dz = x. The group H°(M;Z) is isomorphic to Z and generated by the
fundamental class [M] of M. So D’(78}) is equal to [M], up to sign.
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Let f € Hi(M;Z). Then

X L] = 5 maglf] = 5oy lin f] = (@ D'7py, in f) = £(i[M], i f).

Thus, the value of the Euler class x4, on f is equal (up to sign) to the
intersection number of M and f in V.

5.3. Embedding of M into N.

We next construct a topological embedding of M into V.

Consider the hyperbolic polyhedron P in H® which is a fundamental
polyhedron for T'. Let [ be the geodesic in H® joining 0 and oo. There is
a natural order on [ such that 0 < co and t; < t9 < t3 if to belongs to the
interval (t{,t3). For t € [, denote by P; the hyperplane in H® meeting [ in
the point ¢ and orthogonal to [. Put [a,d] =[N P where a < d. Each of the
hyperplanes P, and P, contains a b-side of P. The construction of P implies
that there are two points b, ¢ € (a,d) with b < ¢ such that any vertex of P
lies in one of the hyperplanes P,, P, P, or P;. Notice also that any f-side of
P either lies between the hyperplanes P, and P, or lies between P, and P,.
In the former case we call such an f-side a smaller f-side of P.

In each vertex of P we choose a point in such a way that if two vertices
are I'-equivalent then the points chosen are I'-equivalent too. For each pair
of vertices lying on the same edge, consider the unique geodesic segment
connecting the the points chosen in the vertices. We get a piecewise-geodesic
graph 7.

First, we observe that C, = yN P, and Cy = 7N Py, are piecewise-geodesic
circles. Indeed, by the construction of P, C, and Cyq we get Cyq = i(C,)
where i is the extension to H® of the inversion in the unit sphere in R*.
So it suffices to show C, is a circle. Consider the set of edges of P lying
on P,. Any such an edge meets exactly two other edges of the set and the
intersection of any two edges of the set is either the empty set or a vertex
of P. This implies that every edge of the graph C, meets exactly two other
edges of the graph. Hence C,, is a circle.

For t € (a,d), the intersection y; of v and P; is a finite set of points. For
any two points of v, lying on the same side of P, we consider the geodesic
segment connecting the points. Since any side is convex the segment is
contained in the side. The union of all such segments is a piecewise-geodesic
graph C;. We now show that, for any ¢ € (a,d), the graph C is a circle.

First, we assume that ¢t € (a,b). Then the hyperplane P; meets every
necklace side and each smaller f-side. Notice that any edge of P meeting P,
is the (only) common edge of a necklace side and a smaller f-side. Moreover,
once P, meets a side of P, it meets exactly two edges of P bounding the
side. Hence every side of P meeting P; contains exactly two points of y; and
every point of 7, lies in exactly two sides. Thus Ct is a circle. Applying the
inversion i we also get that C is a circle for ¢ € (¢, d).

Second, suppose t = b. The hyperplane P, meets any necklace side. Also
P, intersects any smaller f-side so that the intersection is a vertex of P, the
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only common vertex of this f-side and two adjacent necklace sides. Every
such a vertex contains exactly one point of -y, and any point of 7, lies in one
of such vertices. So any necklace side contains exactly two points of 7, and
any point of 7, belongs to precisely two necklace sides. Hence C}, is a circle.
We also get C. = i(C}y) is a circle.

Finally, assume that ¢t € (b,¢). Then P; meets only (and each of) the
necklace sides. Any point of v; lies in precisely two necklace sides and any
necklace side contains exactly two points of the set ;. So C} is a circle.

For t € [a,b], denote by D, the geodesic cone from ¢ over the C;. Finally,
let D be the union of all Dy, for ¢ € [a,b].

5.4. Example. Let I'y be a discrete group constructed in 3.3 or 4.5 that is
isomorphic to I'. The group I'y stabilizes a 3-plane H?. We use the following
notation convention: the index 0 is assigned to all objects concerning I'p.
Thus Py is the fundamenal polyhedron for the action of I'g in H® and Dy C
Py is the 3-disc constructed in 5.3. It is easy to see that Dy = Py N H?
provided the points chosen in the vertices of Py lie in H®. Clearly, Dy is a
fundamental polyhedron for the action of I'g in H?.

Now we present a homeomorphism f from Dy onto D equivariant with
respect to the obvious isomorphism of I'y and I'. The construction of f is
parallel to that of D.

First, we define f on the vertices of Dy. We consider the polyhedrons Dy
and P and fix a one-to-one correspondence of the sets of their sides, edges
and vertices preserving the incidence. For a vertex v of Dy, let f(v) be the
unique point of D lying on the vertex of P corresponding to v.

We say that f proportionally maps a geodesic segment [z,y] onto the
geodesic segment [f(z), f(y)] if the ratio of the distance between z and s to
the distance between f(z) and f(s) does not depend on s € [z,y]. Clearly,
for any pair of geodesic segments [z, y], [x’, y'], there is only one mapping f
with f(z) = 2’ carrying [z, y] onto [2',y'] proportionally.

Now we define f on the edges of Dg. Let vertices x and y bound the edge
e of Dy. Then f(z) and f(y) lie on the vertices of a certain edge of P. Let
f proportionally map e to the geodesic segment connecting f(z) and f(y).

We next proceed in the same way. For every t € (ag, do), we consider the
piecewise-geodesic circle CP. The mapping f has been already defined on
the vertices of C7. Let f proportionally map its edges onto the edges of C;.
In addition, let f proportionally map the segment [ag, do| onto [a, d]. Finally,
for each ¢ € [ag, do], consider the geodesic cone DY. We have defined f in its
vertex t and on its base C7. For any point  of C?, let f proportionally map
the geodesic segment [z, ] onto the geodesic segment connecting f(z) and
f(t). Obviously, the mapping f is a homeomorphism. That f is equivariant
can be checked by direct inspection of side pairing transformations.

Extend f by equivariance to an (equivariant) homeomorphism f : H> —
D, where D is the union of all I-images of D. Moreover, by [Tu], f can be
extended to an equivariant homeomorphism f : H* U A(Ty) — D U A(D).
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The group G acts freely in H®> and H?, so we get a proper embedding i of
the closed hyperbolic 3-manifold M = H?3/G into the hyperbolic 5-manifold
N = H°/G. Clearly, the embedding induces an isomorphism of fundamental
groups, hence it induces a homotopy equivalence. Thus we have proved the
part (ii) of Theorem 5.1.

5.5. Totally geodesic hypersurfaces

Now we consider a subgroup H of I' generated by transformations pairing
necklace sides. Such subgroups have been studied in [GLT] and [Kuil,2].
The group H is convex-cocompact and isomorphic to a uniform lattice in
PSLy(R), so the limit set A(H) is a topological circle.

The group H acts by hyperboic isometries on the unit ball B* in R?,
hence A(H) C S*. Let H* be the hyperplane in H® spanning S*. Clearly,
Py = PNH* is a fundamental polyherdron for the action of H in H*. Note
that H* lies in the interior of the union of all H-images of P. It follows that
H* is precisely invariant under the subgroup H in I' (i.e. H = StabpH* and
gHYNH*=0forall g€ '\ H). Put K = HNG. Then the hyperbolic
4-manifold L = H% K discovered in [GLT], [Kuil,2] is an incompressible
totally geodesic hypersurface in H?/G.

Analogously, Fy = F N S? is a spherical fundamental polyhedron for the
action of H in S*. Then the union of all H-images of the set Fy is the
discontinuity set Qz for the action of H in S®. We again note that Qz lies
in the interior of the union of all H-images of F'. Therefore (2 is precisely
invariant under the subgroup H in GG. Hence the closed conformally flat 3-
manifold Qp/K discovered in [GLT], [Kuil,2] is a hypersurface in the closed
conformally flat 4-manifold €/G.

5.6. The normal Euler class of M in N

We consider the 2-disk Dy = D N H?*. It is easy to construct a uniform
lattice in PSLo(R) acting in H? and isomorphic to H such that there is
an equivariant homeomorphism of its fundamental polygon onto Dy. It
defines an equivariant embedding of H? into H*. Passing to quotients by
K = HN G we get a closed orientable surface S = L N M; the surface S is
a deformation retract of the manifold L (see [GLT], [Kuil,2]).

It is easy to see that the intersection number (M, S)y of M and S in N
is equal to the self-intersection number (S,S); of S in L. In fact, the self-
intersection number of S in L has been calculated in [GLT] and [Kuil,2]. It
follows from [GLT] that if I' comes from §3 then, for a corresponding surface
S, we get (S,S), = 0.

However, for some groups of 4.4 the self-intersection numbers can be
nonzero (see [Kuil,2]). In fact, if the necklace comes from 4.6, then (S, S) =
pq — T where p and ¢ are relatively prime intergers with 1 < ¢ <pand 7' is
an arbitary integer such that ¢ < T < p. Thus we have proved the part (i)
of Theorem 5.1.
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§6. Hyperbolic 5-manifolds and conformally flat 4-manifolds

In this section we study topological properties of hyperbolic 5-manifolds
and of conformally flat 4-manifolds constructed above. Let I' be a discrete
convex-cocompact group satisfying the assumption of 4.8 and let G = 71 (M)
be a torsion-free subgroup of I' of finite index that preserves orientation.

Consider the embedded necklace used in the construction of I'. The
intersection of the unit sphere S® and the union of all necklace balls is a
solid torus in S%. The cases of the knotted and unknotted solid tori lead to
different families of manifolds.

6.1. Theorem. If the solid torus determined by the necklace is unknotted,
then the Kleinian manifold M(G) = (H> U Q)/G is homeomorphic to the
total space of a 2-disc bundle over M. In particular the hyperbolic manifold
N =H"/G = int(M(Q)) is a plane bundle over M and the conformally flat
manifold Q/G = OM(G) is the associated circle bundle over M.

Proof. 1t suffices to construct a I'-compatible 2-disc fibration of the funda-
mental polyhedron P U F over the disk D. (Indeed, having the fibration
constructed we obtain a I'-compatible fibration of H? U over D. Hence
M(G) = (H> UQ)/G is the total space of a 2-disc bundle over M = D/G.)

Given a totally geodesic plane F in H" we denote E the closure of E in
H° U 0,.H® = H>. We say E is a closed plane.

We construct the fibration in question as follows. Let ¢ € [a,d]. Consider
an arbitrary edge E of the polyhedron P U F' that does not lie on P, U P;.
Then the intersection E; = ENP; is a closed 2-plane. (Notice, in particular,
that each of the two vertices of P U F' that bounds F is of the form E; for
some t € {a,b,c,d}.) Also, E;N D is a point. We define the 2-disc E; to be a
fiber over the point £, N D. Now we take an arbitrary side .S of PUF which
is not a b-side. Then SN P, is a closed 3-plane with two disjoint half spaces
removed; these half spaces are bounded by closed 2-planes of the form FE,
and E] where E and E’ are edges of P lying on 0S. In the closed 3-plane
we draw a unique geodesic line orthogonal to both F; and E; and consider
the family of closed 2-planes orthogonal to the line. The intersection of D
and the closed 3-plane is a geodesic segment with end points D N E; and
DN E;. For a closed 2-plane of the family, we take the common point of the
plane and the segment and consider this closed plane to be a fiber over the
point. Thus, we have constructed a 2-disc fibration U — U N D where U is
the union of all the sides of P U F' except for two b-sides. It is clear that
the fibration is I'-compatible.

Consider the closed hyperplane H? in H> spanning the unit sphere 8* C
R*. The hyperplane cut P U F into two pieces P, and P_. Note that the
inversion i in the hyperplane H4 takes P, to P_ preserving the fibration
structure.

Since the solid torus determined by the necklace is unknotted, one can
extend the fibration U — UN D to a 2-disc fibration P, UU — P, UUND.
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Finally, define a fibration structure on P_ via the inversion i. Thus we have
constructed a I'-compatible 2-disc fibration of P U F over D. [J

6.2. Hyperbolic manifolds with nonlocally-flat cores.

Assume that the solid torus determined by the necklace is knotted. Then
the embedding D < P is not locally flat at the points of the segment [a, b].
(Indeed, let Bs be a small enough metric ball centered at a point s € (a, b)
and let x,y be the common points of B, and (a,b). Then 0Bs N D is a 2-
knot in the 4-sphere 0Bg; the knot is the suspension over a 1-knot 0Bs N Dy
with vertices  and y. The knot 0Bs N Dy belongs to a well defined isotopy
knot class specified by the original solid torus. Sinilarly, at the points a and
b the embedding is not locally flat relative to the boundary.) Therefore, if
the solid torus is knotted, the embedding M — N = H’/G is not locally
flat at the points of k disjoint circles, where k = |I" : G|.

Recall that U is the union of all the sides of P U F except for two b-
sides. In 6.1 we constructed a 2-disc fibration of U. Denote by U, the
e-neighborhood of U in P U F' with respect to any Riemannian metric on
P UF. For € small enough, we can extend the fibration defined on U to a
I'-compatible fibration of U..

Consider the union of all I'-images of (PUF)\U.. The quotient space of the
union by the action of G is the disjoint union of £ manifolds homeomorphic
to (Py U Fg) x S', where Py = PN H?* and Fy = F N S? (the notation is
taken from 5.6). The quotient mapping takes the union of all T-images of
D\ U. to a collection of k solid tori of the form Dy x S* where Dy = DN Pyy.

Now we consider the union of all I'-images of U.. Its quotient space by
the action of G is the total space Ny of a plane bundle over My where My
is M with k solid tori removed. Thus the manifold N is obtained by the
pasting of k manifolds of the form Py x S! in Ny along their boundaries.
Each of the manifolds of the form Py x S! is glued to the corresponding
boundary component of Ny in such a way that the torus 9Dy x St is glued
to the boundary torus of M.

Let E be the closed conformally flat 4-manifold /G, where Q is the
discontinuity set for G. It follows from the considerations above that E can
be obtained by gluing along the boundaries & manifolds of the form Fy x S*
and the total space Fy of a circle bundle over My. (Note that Fp is the
comlpement in S? of the solid torus determined by the original necklace.)

§7. Embeddings of limit sets

Throughout this section, let I be a discrete convex-cocompact group
satisfying the assumption of 4.8 and let G be a torsion-free subgroup of I'
of finite index that preserves orientation.

7.1. Theorem. If the solid torus determined by the necklace is unknotted
then the limit set A(T') is an unknotted 2-sphere in S*.

Proof. We need to show that A = A(I') = A(G) is unknotted. The manifold
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E = Q/G is the total space of a circle bundle £ over a closed hyperbolic
3-manifold M with 71(M) ~ G. The circle bundle ¢ is orientable since the
manifolds & and M are orientable.

First, consider the exact sequence of the bundle:

1 —m(SY) = 1 (E) = 1 (M) — 1.

Let t be an element of m(E) corresponding to a fiber of the bundle (all
the fibers are freely homotopic). Since £ is orientable ¢ lies in the center
of m1(E). Moreover, t generates the center of 71(F) because the center of
m1(M) is trivial.

Now consider the exact sequence of the regular covering Q0 —, E:

1 —-m(Q) 2 m(E)— G —1.

Since the center of G is trivial, the subgroup p.(m1(€2)) contains the center of
71 (E). Moreover, p,(m1(£2)) has to coincide with the center of 71 (E) because
G is Hopfian (any finitely generated subgroup of GL(n, C) is residually finite,
hence Hopfian). Consider the regular covering B* x S — E induced by the
universal covering B® — M. Then the following diagram is commutative:

B3 x S1 —— B3

! !

E — M

The regular covering B? x S' — E is isomorphic to the regular covering
Q —, E since they correspond to the same subgroup of m1(E), namely
its center. In other words, there is a G-compatible homeomorphism €2 ~
B? x S1. Therefore the natural S'-action on E whose orbits are the fibers of
E can be lifted to a G-compatible S'-action on Q. By the Tukia Theorem
[Tu], the St-action can be extended to the trivial action on A(G).

We next note that the projection from S* onto the orbit space of the S!-
action coincides with the mapping 7 : S* — B2>U0B? defined as follows. Let
7 |o be the composition of the G-compatible mappings Q ~ B3 x S! — B?,
where the latter mapping is taken from the commutative diagram above. In
addition, let 7 |5 be the unique G-compatible homeomorphism of A onto the
infinity OB? of the hyperbolic 3-space B* constructed in [Tu]. By a lemma
of Tukia [Tu], 7 is continuous. It easily implies that 7 coincides with the
projection.

Finally, we show that the S'-action is equivalent to an orthogonal one.
It suffices to construct a section s of the projection 7 (see [Br, 1.3.4]). The
restriction of s on B? is defined to be a section of the trivial circle fibration
Q1 — B3. (Note that the section is not required to be G-compatible.) The
restriction of s on OB? is defined to be (7 | )71. Clearly, the set Im(s)
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is closed in S* and contains exactly one point from each orbit. Hence s is
a section (see [Br, 1.3.2]). Thus the S!'-action considered is equivalent to
orthogonal one and there is a homeomorphism of S* carrying A to a round
2-sphere. [

7.2. Remark. The first part of the proof of 7.1 concerning the lifting of the
St-action to S* analogous to Kapovich’s arguments for the 3-dimensional
case [Kal]. However, to prove that the S!-action is equivalent to an orthogo-
nal one, Kapovich made use of Raymond’s classification of S'-actions on S2.
Our arguments are more elementary and do not depend on the dimension.

7.3. Uniformly quasiconformal groups

Applying Kapovich’s method [Kal] we now construct a family of discrete
uniformly quasiconformal groups which are not topologically conjugated to
conformal ones (cf. [FS], [Mart]). By the Tukia Theorem [Tu], the circle
action on S* constructed in Theorem 5.1 is uniformly quasiconformal. We
regard Z, as a subgroup of S' generated by a rotation of order n. The
G-action on S* is conformal, hence uniformly quasiconformal. It defines
an action of G' x Z,, on S* that is also uniformly quasiconformal. If the
action is equivalent to a conformal one then one can easily conclude £ =
M xS!. Since some of the bundles E are nontrivial we have obtained discrete
uniformly quasiconformal groups which are not topologically conjugated to
conformal ones.

7.4. Corrolary. There is a closed orientable hyperbolic 3-manifold M and
an (effective) uniformly quasiconformal action of the group mi (M) x Z,, on
S* that is not topologically conjugate to a conformal action. The action is
properly discontinuous on the complement to an unknotted 2-sphere which
is the limit set of the action.

7.5. Theorem. If the solid torus determined by the necklace is knotted then
the limit set A(T') is a wild 2-sphere in S*.

Proof. It follows from 6.2 that there exists a finite family of k£ disjoint 3-tori
in E such that, cutting F along the tori, we get Ey and k& manifolds of
the form Fy x S'. We next note that the 3-tori are incompressible, that
is, the inclusion of each of the tori into £ induces a monomorphism of the
fundamental groups.

By Dehn’s lemma, OFy is incompressible in Fy; hence 0Fy x S! is
incompressible in Fg x S'. It remains to show that the boundary of Ey is
incompressible. Clearly, it suffices to check that the base My of the circle
bundle Ej has the incompressible boundary.

Assume the boundary of My is compressible. Take a nontrivial loop v on
a boundary torus 7" of M such that ~ is null-homotopic in My. Consider the
coverings T' C My induced by the universal covering D — M. Then v can be
lifted to a loop 7 in 7. It is clear from the way we constructed Mo that T (as
well as all other boundary component of M) is a cylinder. Notice that the
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loop 4 must be nontrivial on 7" and null-homotopic in My C D\ int(7). On
the other hand, the cylinder 7" is incompressible in the solid torus D\ int(T’).
This gives a contradiction desired.

Thus the 3-tori considered are incompressible in £; hence, by the Van
Kampen theorem, the composition of inclusions Fy — Fy x St — E
induces a monomorphism of the fundamental groups.

Since the inclusion M — N U E is a homotopy equivalence, there exists
a deformation retraction r: N U E — M. Moreover, this retraction can be
chosen so that it maps Py UFy onto the 2-disk Dy € M (here we invoke the
decomposition of N U E described in 6.2). It gives rise to a G-compatible
retraction 7 H® U Q — D. Restricting 7 to € we get the commutative
diagram

- . E

1L

oM
p

where the vertical arrows are the retractions and the horizontal ones are the

coverings. We now show that

Ker(re:mi(E) — m(M)) = Im(m,: 71 (Q2) — 71 (E)).

Since 71(D) = 1 the map r o7 = po 7 induces the trivial homomorphism
of the fundamental groups. Thus Im(7,) C Ker(r,). To prove the opposite
inclusion we take a loop « in E such that [a] € 71 (E) \Im(7,). Then the lift
& of a to the covering space € is a path whose ends are G-equivalent. Since
7 is G-compatible, the path 7#(&) also has G-equivalent ends. So po 7(&) is
a nontrivial loop in 71 (M). Hence r(a) =ron(&) = po (&) is a nontrivial
loop in 71 (M). Thus [a] ¢ Ker(r,) and, therefore, Ker(r,) C Im(m,).

Since the retraction r maps Fy onto the 2-disk Dy the subgroup w1 (F)
of the group m1(E) lies in Ker(r.:m (E) — w1 (M)). As Fp is a nontrivial
knot space the group m; (Fp) is nonabelian; hence the group

Ker(ro:m(E) — m(M)) = Im(me: w1 (Q) — 11 (E)) =~ 71 (Q)

is nonabelian.

Therefore the sphere A = A(T") is knotted. We next show that A cannot
be tame. Assume A is tame. Then A must be locally flat. (Indeed, if A were
not locally flat at a point z € A then A would be not locally flat at each
point of the infinite '-orbit of x; it would follow the wildness of A.) Then
Q) is the interior of a compact manifold whose boundary is homeomorphic
to S? x S1. Hence 2 is dominated by S? x St [Kul]. In particular, m(Q) <
71(S? x S1) ~ Z and the group 71(Q) is Abelian. A contradiction. Thus A
is a wild knot and we are done. U
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68. A theorem on convex-cocompact representations

In this section we prove Theorem 1.4. It follows from either Theorem 1.1
or Theorem 1.3 assuming the following folklore result on convex-cocompact
groups.

Let I" be a torsion free convex-cocompact subgroup of G = Isom (H") =
SOy(n,1); so T is finitely presented. We equip Hom(T", G) with pointwise
convergence topology.

8.1. Theorem. The subset CC™(T') € Hom(T',G) is open. Moreover,
given representations p1 and ps that lie in the same connected component
of CC™T), there is a self-homeomorphism f of H™ U O-.H"™ such that

for(Nf~t = pa(7y) for all y €T.

Proof. Tt suffices to show that for every p € CC™(T'), there exsists an open
neighborhood U, of p in Hom(I',G) such that all ¢ € U, are convex-
cocompact and topologically conjugate to the representation p on H™ U
OscH". (Indeed, it implies that CC™(I") is open and that any two repre-
sentations that lie in the same path-connected component of CC"(I") are
topologically conjugate. It remains to observe that every connected compo-
nent of CC™(I") must be path-connected. Since Hom(T", G) is a real-algebraic
variety, it is homeomorphic to a simplicial complex. Being an open subset of
Hom(I', G), the space CC™(I") is locally path-connected. So any connected
component of CC™(T") is path-connected.)

Start with a representation p € CC"(I") and denote R = p(I"). First,
assume that H" /R is a closed manifold. According to [Go| one can find an
open neighborhood U, of p in Hom(I',G) such that each ¢ € U, is a holo-
nomy of some hyperbolic structure on M. Since M is closed, the structure
is complete [Th], in other words, it arises as H" /F where F' = ¢(I"). So F'is
convex-cocompact. The identity map of M lifts to a topological conjugacy
of ¢ and p on H". As both groups are convex-cocompact, it extends to a
topological conjugacy of ¢ and p on H" U 9., H" [Tu.

It remains to consider the case when R acts discontinuously at some
point of Jo H". According to [Sul], there exsists an open neighborhood U,
of p in Hom(I', G) such that, for all ¢ € U,, there exists an equivariant
homeomorphism of the limit set A(R) onto a nearby compact F = ¢(T')-
invariant subset of 0., H™. Clearly this compact subset contains A(F') which
is the smallest compact F-invariant set. (Note that we have not yet shown
that F'is discrete. Still the limit set of F' is defined as the set of accumulation
points of the F-orbit of any point of H™.) Conversely, any point of the
compact subset is a limit point because of the conjugacy of the actions.
Thus we have constructed a ¢o p~!-equivariant homeomorphism of the limit
sets. In particular, it follows that ¢ o p~! and hence ¢ is injective.

Since the limit set A(F) of F lies in a small neighborhood of A(R) #
OsoH™, we conclude that A(F) is a proper subset of 0, H". In other words.
the group F' acts properly discontinuously at a point of 0, H", in particular,
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it is a discrete group. Being discrete, F' has to be convex-cocompact because
convex-cocompactness is encoded in the dynamics of the F-action on A(F)
which is equivalent to the action of the convex-cocompact group R on its
limit set [Bo].

Look at the Kleinian manifold M(R) = (H" UQ(R))/R where Q(R) =
OsoH™ \ A(R) is the discontinuity set of R. This is a compact manifold with
the boundary Q(R)/R. Tt has a natural conformal structure modeled on the
space (H",0,,H") = (H",S"!) equipped with the standard SOq(n,1)-
action. We refer to the structure as to the Kleinian structure. According to
[Go], one can make the open neighborhood U, chosen above a little smaller
so that each ¢ € U, is a holonomy of some Kleinian structure on M (R). The
developing map of such a structure is an equivariant map from the universal
cover (M(R),0M(R)) to (H",S" 1) which is a local diffeomorphism.

In fact, one can choose U, even smaller so that every ¢ € U,, is a holonomy
of a Kleinian structure on M (R) such that the corresponding developing map
takes OM(R) to Q(F). Indeed, since DM (R) is compact, there is a compact
subset K of OM(R) = Q(R) that is mapped onto dM(R) by the covering
projection. Fix a nearby Kleinian structure on (M (R),dM (R)) with the
holonomy group F = ¢(I'). Its developing map d restricted to K is close
to the inclusion K — Q(R). Recall that the limit set A(F') lies in a small
neighborhood of A(R). Since the compact sets K and A(R) are disjoint, so
are A(F) and d(K). Therefore, A(F) and d(OM(R)) are disjoint because
A(F) is F-invariant.

Passing to quotients we get a local diffeomorphism d of M(R) to (H" U
Q(F))/F. Since M(R) is compact, so is d(M(R)). Moreover d(M(R)) is
open, as d is a local diffeomorphism. Therefore, d is surjective. Double the
compact manifolds M(R) and (H" US(H))/H along their boundaries and
extend d to the doubles by symmetry. Then the extension d is a surjective
local diffeomorphism of closed manifolds. So it is a covering map. The map
d is equivariant with respect to an isomorphism of p(T') and H. It follows
that d induces an isomorphism of fundamental groups, hence d is a diffeo-
morphism as desired. Putting together d and the conjugacy on the limit
sets we get [Tu] a topological conjugacy of p(I') and H on H" U0, ,H". O

8.2. Remark. The same proof works for all negatively curved rank one sym-
metric spaces.

References

[An] M. T. Anderson, Metrics of negative curvature on vector bundles,
Proceedings of AMS 99 (1987), no. 2, 357-363.

[Apl] B. Apanasov, Strange actions of compact 3-hyperbolic group on H
and spaces fibering over closed hyperbolic 3-manifolds, Abstracts
Amer. Math. Soc. 14 (1993), no. 4, 430.

[Ap2] B. Apanasov, Non-triviality of Teichmiiller space for Kleinian groups



28

[GLT]

[IM]

[Kal]

[Ka2]

[Kuil]

[Kui2]

[Kul]

KLEINIAN GROUPS AND HYPERBOLIC 5-MANIFOLDS

in space, in: Riemann surfaces and related topics, Proceedings of the
1978 Stony Brook Conference, Ann. Math. Studies Vol. 97 (I. Kra
and B. Maskit, eds.), Princeton University Press, Princeton, 1981,
pp. 21-31.

B. Apanasov, A. Tetenov, Nontrivial cobordisms with geometrically
finite hyperbolic structures, J. Diff. Geom. 28 (1988), no. 3, 407—422.
I. Belegradek, Intersection pairing in hyperbolic manifolds, vector
bundles and characteristic classes, preprint (1996).

I. O. Belegradek, Conformally flat Seifert manifolds, Siberian Adv.
Math. 3 (1993), no. 1, 1-18.

G. E. Bredon, Introduction to compact transformation groups, Aca-
demic Press, New York, London, 1972.

B. H. Bowditch, Geometrical finiteness with variable negative curva-
ture, Duke Math. J. 77 (1995), 229-274.

A. Dold, Lectures on algebraic topology, Grundlehren der mathema-
tische Wissenschaften 200, Springer—Verlag, 1972.

D. B. A. Epstein, C. Petronio, An exposition of Poicaré’s polyhedron
theorem, L’Enseignement Mathématique 40 (1994), 113-170.

M. Freedman, R. Skora, Strange actions of groups on spheres 1,
J. Diff. Geom. 25 (1987), no. 1, 75-98.

W. M. Goldman, Geometric structures on manifolds and varieties of
representations, Contemporary Mathematics, vol. 74 (W. M. Gold-
man and A. R. Magid, eds.), Amer. Math. Society, Providence, 1988,
pp- 169-197.

M. Gromov, H. B. Lawson, Jr. and W. Thurston, Hyperbolic 4-
manifolds and conformally flat 3-manifolds, Publ. Math. I.H.E.S.
68 (1988), 27-45.

D. Johnson and J. Millson, Deformation spaces associated to com-
pact hyperbolic manifolds, in: Discrete Groups in Geometry, Progress
in Mathematics, vol. 67 (Roger E. Howe, eds.), Birkhduser Boston,
Boston, 1987, pp. 48-106.

M. E. Kapovich, Conformally Flat Structures on 3-manifolds: Exis-
tence Problem. I, Siberian mathematical journal 30 (1989), 60-73.

, Intersection pairing on hyperbolic 4-manifolds, preprint 062-
92, MSRI, Berkeley, 1992.

N. H. Kuiper, Hyperbolic 4-manifolds and tesselations, Publ. Math.
ILLH.E.S. 68 (1988), 47-76.

, Fairly simmetric hyperbolic manifolds, in: Geometry and
Topology of Submanifolds 11, (Avignon, 1988), World Sci. Publisher.,
1990, pp. 165—207.

R. Kulkarni, Infinite regular coverings, Duke Math J. 45 (1978),
no. 4, 781-796.

F. Luo, Mdbius structures on Seifert manifolds I, J. Diff. Geom. 42
(1995), 449-458.




I. BELEGRADEK 29

[Mart] G. Martin, Discrete quasiconformal groups which are not conjugated
to Mébius groups, Ann. Ac. Sci. Fenn., Ser. AT 11 (1986), 179-202.

[Mass] W. S. Massey, Homology and cohomology theory, Marcel Dekker,
New York, Basel, 1978.

[Th]  W. P. Thurston, Three-Dimensional Geometry € Topology, The Ge-
ometry Center, Minneapolis, 1991.

[Tu]  P. Tukia, On isomorphism of geometrically finite Mdbius groups,
Publ. Math. LH.E.S. 61 (1985), 171-214.



