Below is a list of statements some of which are false, and some of which are true. Decide which is which.

In what follows A is an arbitrary $n \times n$ matrix.

1. Every 2×2 matrix is diagonalizable.
2. If A^{2011} is invertible, then so is A (Hint: compute det).
3. The determinant of the block matrix $\begin{bmatrix} A & 0 \\ C & D \end{bmatrix}$ equals $\det(A) \det(D)$.
4. $\det(AB) = \det(A) \det(B)$.
5. If A, B are matrices with complex entries, then $\overline{AB} = \overline{A} \overline{B}$
6. If A, B, C are $n \times n$ matrices, then $AB = AC$ implies $B = C$.
7. If A, B, C are $n \times n$ matrices, then $A[B, C] = [AB, AC]$.
8. If the product of two matrices is I_n, then both matrices are invertible. (Decide whether this is true for arbitrary matrices, and then for square matrices).
9. If A and AB are invertible, then B is invertible.
10. If A^\top is invertible, then A is invertible.
11. the dimension of $\text{Nul}A$ is the number of free variables in solving $AX = 0$.
12. any two bases of a subspace H have the same number of vectors.
13. the subspaces $\text{Col}A$ and $\text{Col}R$ have the same dimension.
14. the subspaces $\text{Nul}A$ and $\text{Nul}R$ are equal.
15. the subspaces $\text{Col}A$ and $\text{Col}R$ are equal.
16. Pivotal columns form a basis of $\text{Col}A$.
17. $\det(A) = 0$ if and only if A is invertible.
18. λ is an eigenvalue of the block matrix $\begin{bmatrix} A & B \\ 0 & D \end{bmatrix}$ if and only if λ is an eigenvalue of A or D.

19. λ is an eigenvalue of the block matrix $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ if and only if λ is an eigenvalue of A or D.

20. If A is a (upper or lower) triangular matrix with entry a_{ij} at the ij slot, then the eigenvalues of A are a_{11}, \ldots, a_{nn}.

21. If $A = LU$ is the LU factorization of A, then U and A have the same determinant.

22. If $A = LU$ is the LU factorization of A, then U and A have the same eigenvalues.

23. A is diagonalizable if and only if eigenvalues of A form a basis.

24. If all eigenvalues of A are real, then A is symmetric.

25. $\det(A) = \lambda_1 \ldots \lambda_n$.

26. $\det(A - \lambda I_n) = (\lambda_1 - \lambda) \ldots (\lambda_n - \lambda)$ where $\lambda_1, \ldots, \lambda_n$ are eigenvalues of A.

27. If A is symmetric (that is $A^\top = A$), then the eigenvalues of A are real.

28. If A is diagonalizable, then A has n distinct eigenvalues.

29. A has n eigenvalues (counted with multiplicities, that is possibly some of them are equal).

30. λ is an eigenvalue of A if and only if $A - \lambda I_n$ is not invertible.

31. If v is an eigenvector for the eigenvalue λ, then \bar{v} is an eigenvector for $\bar{\lambda}$.

32. If λ is an eigenvalue of A, then so is $\bar{\lambda}$, the complex conjugate of λ.

33. The matrices $B^{-1}AB$ and A have the same eigenvectors.

34. The matrices $B^{-1}AB$ and A have the same eigenvalues.

35. If P is an $n \times n$ matrix whose columns are eigenvectors of A, then $AP = PD$ where D is diagonal.
36. If P is an $n \times n$ matrix whose columns are eigenvectors of A, then P is invertible.

37. If A is diagonalizable and B is invertible, then $B^{-1}AB$ is diagonalizable.

38. If A is diagonalizable, then so is A^k for all positive integers k.

39. If A^{-1} is diagonalizable, then so is A.

40. If v is an eigenvector for A, and c is a nonzero number, then cv is an eigenvector for A.

41. If v_1, v_2 are eigenvectors for A, then $v_1 + v_2$ is an eigenvector for A.